Find the general solution of the second order differential equation y''(t)+y(t) = 5exp(2t)

The general solution yGS(t) to a differential equation in the form ay''(t)+by'(t)+cy(t)=f(t) is the sum of the complementary function yCF(t) and a particular solution yPS(t).First we find the complementary function, which is the general solution to the equation y''(t)+y(t)=0, so the right hand side is zero. The characteristic equation associated with this equation is r2+1=0, which has solutions r=±i. Hence yCF(t) = Acos(t)+Bsin(t) where A and B are arbitrary constants.Next we find a particular solution. We guess based on the right hand side that a particular solution has the form yPS(t)=Ce2t, where C is a constant to be determined.Differentiating twice we find that yPS''(t)=4Ce2t, so yPS''(t)+yPS(t) = 4Ce2t + Ce2t = 5Ce2t.But since y''(t)+y(t)=5e2t, this means that 5Ce2t must equal 5e2t, so we see that C=1, so yPS(t)=e2t.Therefore yGS(t) = yCF(t) + yPS(t) = Acos(t) + Bsin(t) + e2t.

AC
Answered by Alex C. Further Mathematics tutor

2456 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

A useful practice: how to determine the number of solutions of a system of linear equations beforehand


Use de Moivre's theorem to calculate an expression for sin(5x) in terms of sin(x) only.


Using graphs, show how the Taylor expansion can be used to approximate a trigonometric function.


Differentiate arctan of x with respect to x.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences