Find the eigenvalues and eigenvectors of the matrix M , where M{2,2} = (1/2 2/3 ; 1/2 1/3) Hence express M in the form PDP^-1 where D is a diagonal matrix.

To start off, It's worth noting the definition of eigenvalues: for a Matrix A (n x n), it's ith eigenvalue (λi) is defined as the scalar constant the ith eigenvector (vi) is multiplied for the matrix multiplication Avi : Avi = λiv (1)Hence, to find the ith eigenvalues, rearrange to get the equation: (A - λiIn)vi = 0 (2)Where In is the n x n Identity Matrix.For a non-trivial solution, A-λiIi must be defined such that det(A-λiIi) = 0Now we can solve the equation for λ:(1/2 - λ)(1/3 - λ) - (1/2)(2/3) = 0 (3)-The characteristic equation for A, with roots λ = 1, -1/6Now substitute each λi into equation (2) to solve for vi where vi = (xi ; yi).vi should have no particular solution; there should be an infinite family of solutions. If this is not the case, an error has been made. Therefore, the eigenvector can take any value of x and y, with the ration of x : y constant. To solve, set the value of xi (e.g. xi = 1), then solve for yi (or vice versa).Finally, the matrix D is the diagonal matrix of entries λi, and P the matrix of eigenvectors (be consistent with the order the ith eigenvalues and eigenvectors are entered):A = PDP-1 (4)

LT
Answered by Liam T. Further Mathematics tutor

2420 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Write the Maclaurin’s series for f(x)=sin(3x)+e^x up to the third order


Find the nth roots of unity.


How to approximate the Binomial distribution to the Normal Distribution


Why does matrix multiplication seem so unintuitive and weird?!


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences