Find the eigenvalues and eigenvectors of the matrix M , where M{2,2} = (1/2 2/3 ; 1/2 1/3) Hence express M in the form PDP^-1 where D is a diagonal matrix.

To start off, It's worth noting the definition of eigenvalues: for a Matrix A (n x n), it's ith eigenvalue (λi) is defined as the scalar constant the ith eigenvector (vi) is multiplied for the matrix multiplication Avi : Avi = λiv (1)Hence, to find the ith eigenvalues, rearrange to get the equation: (A - λiIn)vi = 0 (2)Where In is the n x n Identity Matrix.For a non-trivial solution, A-λiIi must be defined such that det(A-λiIi) = 0Now we can solve the equation for λ:(1/2 - λ)(1/3 - λ) - (1/2)(2/3) = 0 (3)-The characteristic equation for A, with roots λ = 1, -1/6Now substitute each λi into equation (2) to solve for vi where vi = (xi ; yi).vi should have no particular solution; there should be an infinite family of solutions. If this is not the case, an error has been made. Therefore, the eigenvector can take any value of x and y, with the ration of x : y constant. To solve, set the value of xi (e.g. xi = 1), then solve for yi (or vice versa).Finally, the matrix D is the diagonal matrix of entries λi, and P the matrix of eigenvectors (be consistent with the order the ith eigenvalues and eigenvectors are entered):A = PDP-1 (4)

LT
Answered by Liam T. Further Mathematics tutor

3011 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

The set of midpoints of the parallel chords of an ellipse with gradient, constant 'm', lie on a straight line: find its equation; equation of ellipse: x^2 + 4y^2 = 4


z = 4 /(1+ i) Find, in the form a + i b where a, b belong to R, (a) z, (b) z^2. Given that z is a complex root of the quadratic equation x^2 + px + q = 0, where p and q are real integers, (c) find the value of p and the value of q.


How do you invert a 2x2 matrix?


I do not understand this topic and particularly this example. In the class the result was found out but I still do not get it. How did the teacher came up with this outcome?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning