find all the roots to the equation: z^3 = 1 + i in polar form

1st write 1+ i in polar form, sketch a diagram to find the angle ( =pi/4) and find the modulus ( sqrt(2))z^3 = Sqrt(2) E^ipi/4This is true for all equivalent solutions (add 2kpi) z^3 = sqrt(2)e^(pi/4 +2kpi)iUse De moivres theorem: z = 2^(1/6) e^(pi/12 +2kpi/3)iThis is an algebraic equation, so has 3 solutions (since z^3 is the highest power) answers are usually given with angles in range -pi < x < pi. So our solutions correspond to k = 0, 1, -1z = 2^1/6 e^ipi/12 , 2^1/6 e^i3pi/4 , 2^1/6 e^-i7pi/12

RM
Answered by Rajan M. Further Mathematics tutor

9624 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Prove by induction that (n^3)-n is divisible by 3 for all integers n>0 (typical fp1 problem)


FP3- Find the eigenvalues and the eigenvector for the negative eigenvalue, from this 2x2 matrix of columns (2,1) and (3,0)


Express sin(5theta) in terms of sin(theta) and powers of sin(theta) only.


Find y in terms of x for the equation 2x(dy/dx) + 4y = 8x^2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences