## MYTUTOR SUBJECT ANSWERS

681 views

### A satellite is in a stationary orbit above a planet of mass 8.9 x 10^25 kg and period of rotation 1.2 x 10^5 s. Calculate the radius of the satellite's orbit from the centre of the planet.

A body in a stationary orbit will always remain above the same point on the planet as it orbits. For a body to be in such an orbit, it must rotate around the planet in the same direction as the spin of the planet, and its orbital period must be equal to the period of rotation of the planet. In this question we are aksed to calculate the orbital radius at which the satellite will complete one orbital cycle in precisely the time that it will take the planet to complete one full revolution.

The satellite, mass m, will be undergoing uniform circular motion around the centre of mass of the planet at some radius r. The centripetal force, FC, required to keep the satellite moving at a constant angular speed w (where w=2*pi/T; T is the orbital period of the satellite), will be given by

FC=m*r*w2.

But what gives rise to this centripetal force? Recall that centripetal force is not a force in itself, but rather the name for a force which always acts centrally (towards the same point) on a body undergoing circular motion. In this case, the central force is the gravitational pull of the planet on the satellitle, FG, such that FC=FG. By Newton's universal law of gravitation,

FG=(G*M*m)/r2,

where M is the mass of the planet, and G is the gravitational constant 6.67*10-11 m3kg-1s-2.

Equating the two forces together, we get that

m*r*w2 = (G*M*m)/r2.

We wish to find r, so rearranging to make r the subject and noticing that the mass of the satellite cancels out, we get that

r3 = (G*M)/w2.

We know that w=(2*pi)/T, and we also know that T must be equal to the period of rotation of the planet for a stationary orbit, which we are given. Making this substitution for w, and performing a little algebra,

r3 = (G*M*T2)/4*pi2.

If we substitute in the values of G, M and T, and take the cubed root to get r, we get that

r = 1.3*108 m.

Thus, for our satellite to be in a stationary orbit around this planet it must be 1.3*108 m away from the centre of the planet.

2 years ago

Answered by Dorian, an A Level Physics tutor with MyTutor

## Still stuck? Get one-to-one help from a personally interviewed subject specialist

#### 116 SUBJECT SPECIALISTS

£30 /hr

Degree: Physics and Astronomy with a Year Abroad (Bachelors) - Durham University

Subjects offered:Physics, Science+ 3 more

Physics
Science
Maths
German
Chemistry

“Hey, I'm Rachel and I'm Physics graduate from Durham University. My best subjects at school were always science and maths but I also loved languages and art”

£36 /hr

Degree: MPhys Physics with Study in Australia (Masters) - Exeter University

Subjects offered:Physics, Maths+ 1 more

Physics
Maths
-Personal Statements-

“I am a third year physicist at Exeter, I love my course and I am keen to share my knowledge and experience to help you with GCSE and A level maths and physics.”

£20 /hr

Degree: General Engineering (Masters) - Durham University

Subjects offered:Physics, Maths+ 2 more

Physics
Maths
Further Mathematics
-Personal Statements-

“Hi! I love helping people achieve their potential I can help you improve your Maths and Physics skills with sessions tailored to suit your needs!”

MyTutor guarantee

#### About the author

£26 /hr

Degree: Theoretical Physics (Masters) - Durham University

Subjects offered:Physics, Maths+ 1 more

Physics
Maths
Further Mathematics

“About Me As a Theoretical Physics student at Durham University, I am more than aware of all of the confusing turns that science can take. I have areal passion for my subject, and hope to show my students howbeautiful science can be.  ...”

### You may also like...

#### Posts by Dorian

A satellite is in a stationary orbit above a planet of mass 8.9 x 10^25 kg and period of rotation 1.2 x 10^5 s. Calculate the radius of the satellite's orbit from the centre of the planet.

Two lines have equations r = (1,4,1)+s(-1,2,2) and r = (2,8,2)+t(1,3,5). Show that these lines are skew.

Use De Moivre's Theorem to show that if z = cos(q)+isin(q), then (z^n)+(z^-n) = 2cos(nq) and (z^n)-(z^-n)=2isin(nq).

#### Other A Level Physics questions

Why is potential energy negative? What does that even mean?

Why does a single slit diffraction pattern occur?

What are quarks?

A ball of mass 0.25 kg is travelling with a velocity of 1.2 m/s when it collides with an identical, stationary ball. After the collision, the two balls move together with the same velocity. How fast are they moving?

We use cookies to improve your site experience. By continuing to use this website, we'll assume that you're OK with this.