How do I apply mathematical induction to answer questions

If you are familiar with induction but unsure how to answer the types of questions that require it, a structure can be useful.
Even when confident, it will help an examiner to see where to award you marks if you display your working as follows.
Base case: Stating or proving why the result youre asked to prove is true for n=1 or n=0.
Assumption: We needn't know that this is true, here we simply write that we assume there is some value of n=k, for which the result is true.
Induction Step: This is often the trickiest part. All the other steps are the same whatever question you may be tackling, however here you need to conclude the statement in question holds for n=k+1 if it hold for n=k. Usually this will involve a few steps of algebra.
Conclusion: All thats left to do now is state "By mathematical induction, [the result] is true for all n".

With this in mind you may need to practice some examples to get used to what could be required for an induction step. Here's one to try yourself or go through with a tutor:Show that 4^n - 1 is divisible by 3 for all intergers n. [Hint: X is divsible by three is equivalent to X is equal to three times some other integer]

OM
Answered by Oliver M. Further Mathematics tutor

2459 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Prove, by induction, that 4^(n+1) + 5^(2n-1) is always divisible by 21


Find a vector that is normal to lines L1 and L2 and passes through their common point of intersection where L1 is the line r = (3,1,1) + u(1,-2,-1) and L2 is the line r = (0,-2,3) + v(-5,1,4) where u and v are scalar values.


A particle is projected from the top of a cliff, 20m above the sea level at an angle of 30 degrees above the horizontal at 20m/s. At what vertical speed does it hit the water?


Find the determinant of a 3x3 matrix.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning