How do I find the square root of a complex number?

Say you want to find the square root of the complex number 3+2i.
We can assume that the answer we want will be in the form a+bi.
It follows then, that you can also write 3+2i as (a+bi)2.
Expanding this gives us 3+2i = a2+2abi-b2
Then all we need to do is compare the coefficients of the imaginary and real parts: i.e. 3 = a2-b2 and 2 = 2ab.
Solve these 2 simultaneous equations to get a =1.8 and b = 0.56 (ignore any imaginary solutions for a and b - they have to be real).
Therefore the square root of 3+2i is 1.8+0.56i. You can check this by squaring our solution and you'll get back to 3+2i (or near enough due to rounding).


DC
Answered by Dan C. Further Mathematics tutor

8680 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Explain why the equation tanx + cotx = 1 does not have real solutions.


I don't know what I am doing when I solve differential equations using the integrating factor and why does this give us the solutions it does?


write the sum cos(x)+cos(2x)+...+cos(nx) as a quotient only involving sine and cosine functions


Given y=arctan(3e^2x). Show dy/dx= 3/(5cosh(2x) + 4sinh(2x))


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning