How do I find the square root of a complex number?

Say you want to find the square root of the complex number 3+2i.
We can assume that the answer we want will be in the form a+bi.
It follows then, that you can also write 3+2i as (a+bi)2.
Expanding this gives us 3+2i = a2+2abi-b2
Then all we need to do is compare the coefficients of the imaginary and real parts: i.e. 3 = a2-b2 and 2 = 2ab.
Solve these 2 simultaneous equations to get a =1.8 and b = 0.56 (ignore any imaginary solutions for a and b - they have to be real).
Therefore the square root of 3+2i is 1.8+0.56i. You can check this by squaring our solution and you'll get back to 3+2i (or near enough due to rounding).


DC
Answered by Dan C. Further Mathematics tutor

8754 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

How does proof by induction work?


Let E be an ellipse with equation (x/3)^2 + (y/4)^2 = 1. Find the equation of the tangent to E at the point P where x = √3 and y > 0, in the form ax + by = c, where a, b and c are rational.


Find the displacement function if the acceleration function is a=2t+5. Assume a zero initial condition of displacement and v=8 when t=1.


Use the geometric series e^(ix) - (1/2)e^(3ix) + (1/4)e^(5ix) - ... to find the exact value sin1 -(1/2)sin3 + (1/4)sin5 - ...


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning