Find the general solution to the differential equation d^2x/dt^2 + 5 dx/dt + 6x = 4 e^-t

To solve a linear second order differential equation we first find the complementary function and then the particular integral. To find the complementary function we must find the roots of the auxiliary equation m2+ 5m + 6 = 0 which are m = -3 and m = -2 and which can be found by factorising. This means that the complementary function of the differential equation is xc = A e-3t+B e-2t where A and B are constants.As 4 e-t is to the right of the equals sign, the particular integral must be of the form xp =C e-t where C is a constant. We then differentiate the particular integral twice and substitute into the original differential equation. Differentiating gives dxp/dt = -Ce-t and d2xp/dt2 = Ce-t. Substituting these into the differential equation gives 2C e-t= 4e-t, therefore C =2 and so xp=2e-t. Finally we add the complementary function to the particular integral to reach the general solution x = A e-3t+B e-2t+ 2e-t.

TM
Answered by Thomas M. Further Mathematics tutor

8149 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

The plane Π contains the points (1, 2, 3), (0, 1, 2) and (2, 3, 0). What is the vector equation of the plane? and what is the cartesian equation of the plane?


By use of matrices uniquely solve the following system of equations, justifying each step of the calculation: 3x-7y=6, 5y-2x=-3.


A useful practice: how to determine the number of solutions of a system of linear equations beforehand


How do you show that the centre of a group is a subgroup


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning