Using Newton's law of universal gravitation, show that T^2 is proportional to r^3 (where T is the orbital period of a planet around a star, and r is the distance between them).

(Lets consider a simple planetary system composed of a planet orbiting a star. the gravitational force between the two is given by F=(GMm)/(r2). Assuming the planet also moves in a circular orbit, we can consider the centripetal force, F=mω2r. As both gravitational and centripetal forces act in the same direction, we can equate them to find (GMm)/(r2)=mω2r.
We note that 'm' cancels and we can divide through by 'r' to arrive at GM/r32. ω is simply angular frequency given by ω =2π/T. Substituting this into our expression we find that GM/r3= 4π2/T2.After some simple rearranging, we note that  T=(4π2r3)/(GM). So  T2 is indeed proportional to  r3 . This simple statement is known as Kepler's third law of planetary motion.

KS
Answered by Karanvir S. Physics tutor

25287 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Show that gravitational force within a nuclei is negilible compared with the electric repulsion.


Light with a frequency of 200nm is shone on a sodium plate with a work function of 2.28eV and electrons start escaping the surface of the plate due to the photoelectric effect. What is the maximum kinetic energy of one of these electrons in eV?


Given a projectile is launched, from rest, at an angle θ and travels at a velocity V, what is the range and path of motion of the projectile? (Ignore air resistance.)


What is magnetism?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences