Using Newton's law of universal gravitation, show that T^2 is proportional to r^3 (where T is the orbital period of a planet around a star, and r is the distance between them).

(Lets consider a simple planetary system composed of a planet orbiting a star. the gravitational force between the two is given by F=(GMm)/(r2). Assuming the planet also moves in a circular orbit, we can consider the centripetal force, F=mω2r. As both gravitational and centripetal forces act in the same direction, we can equate them to find (GMm)/(r2)=mω2r.
We note that 'm' cancels and we can divide through by 'r' to arrive at GM/r32. ω is simply angular frequency given by ω =2π/T. Substituting this into our expression we find that GM/r3= 4π2/T2.After some simple rearranging, we note that  T=(4π2r3)/(GM). So  T2 is indeed proportional to  r3 . This simple statement is known as Kepler's third law of planetary motion.

KS
Answered by Karanvir S. Physics tutor

27722 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

An infared wave has a wavelength of 1.5 x10^–6 m. The speed of this wave is 2.2 × 10^8 m/s. Calculate the frequency of the wave. Give your answer in standard form and to 2 significant figures.


The tip of each prong of a tuning fork emitting a note of 320Hz vibrates in SHM with an amplitude of 0.50mm. What is the speed of each tip when its displacement is zero?


What is the difference between a scalar and a vector? Give 3 examples of each.


People A and B are taking a lift of mass 500 kg which has constant acceleration and the force from the rope that pulls it is 7500 N. The scales where the people stand show a reading of 720 N and 500 N.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning