The radius of the Earth is 6,400km and has a mass of 6x10^24kg. Calculate the minimum velocity needed by a projectile, fired from the surface of the Earth in order to escape the Earths gravity.

First we write down the relevant information given in the question. Re = 6,400km = 6.4 x 106 m, Me = 6 x 1024 kg.For the projectile to escape the Earths gravity, the projectile must be launched with a kinetic energy which is greater than the amount of work needed to overcome Earths gravity, or Earth's gravitational potential. To find the minimum velocity required, we equate kinetic energy and gravitational potential on Earths surface and rearrange for velocity.
-GMm/R = 0.5mv2
Hence, v2 = -2GM/R, so vesc = sqrt(-2GM/R)Inputting the values gives an escape velocity of vesc = 11200 ms-1 to 3 s.f

NC
Answered by Neil C. Physics tutor

7201 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

What's the difference between inertial and gravitational mass?


Why do skydivers have a terminal velocity?


A pellet of mass 8.8 g embeds itself in a wooden block of 450 g which is suspended by a light in-extensible string. After the collision the block reaches a max height of 0.63 m. Calculate the initial velocity of the pellet.


A space probe of mass 1000kg, moving at 200m/s, explosively ejects a capsule of mass 300kg. The speed of the probe after the explosion is 250m/s. What is the velocity of the capsule?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning