The radius of the Earth is 6,400km and has a mass of 6x10^24kg. Calculate the minimum velocity needed by a projectile, fired from the surface of the Earth in order to escape the Earths gravity.

First we write down the relevant information given in the question. Re = 6,400km = 6.4 x 106 m, Me = 6 x 1024 kg.For the projectile to escape the Earths gravity, the projectile must be launched with a kinetic energy which is greater than the amount of work needed to overcome Earths gravity, or Earth's gravitational potential. To find the minimum velocity required, we equate kinetic energy and gravitational potential on Earths surface and rearrange for velocity.
-GMm/R = 0.5mv2
Hence, v2 = -2GM/R, so vesc = sqrt(-2GM/R)Inputting the values gives an escape velocity of vesc = 11200 ms-1 to 3 s.f

NC
Answered by Neil C. Physics tutor

7465 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Given that a light ray enters a glass prism at angle of 50 degrees from the normal and is refracted to an angle of 30 degrees from the normal, calculate the speed of light in glass.


Describe how a PET scan works?


For 100ml of a liquid with a mass density of 1(kg m^-3), and a specific heat capacity of 2(kJ kg^-1 K^-1), how much energy is required to increase the temperature of the liquid by 4 degrees celsius. Assume no heat loss and that the liquid does not boil.


A ball of mass m is thrown from the ground at the speed u=10ms^-1 at an angle of 30 degrees. Find the max height, the total flight time and the max distance it travels?Assume g=10ms^-1 and there is no air friction


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning