Show that i^i = e^(-pi/2).

This question is very similar to differentiating x^x and the method for tackling it is quite common when powers are involved. We want to show that i^i=e^(-pi/2). Start by writing z=i^i (act like we do not know what i^i is yet). A number raised to power of i is very strange. So take logarithms on both sides:z=i^i --> ln(z)=ln(i^i)=iln(i) using properties of logarithms.Now we have to figure out what ln(i) is. Recalling Euler's identity e^ix=cos(x)+isin(x) we remember that i=e^(ipi/2). ln is the inverse of exponential so it makes sense that ln(i)=ln(e^(ipi/2))=ipi/2. So ln(z)=i*(i*pi/2)=-pi/2. So z=e^(-pi/2). Thus i^i=e^(-pi/2).

JP
Answered by John P. STEP tutor

6844 Views

See similar STEP University tutors

Related STEP University answers

All answers ▸

How can I integrate e^x sin(x)?


Suppose that 3=2/x(1)=x(1)+(2/x(2))=x(2)+(2/x(3))=x(3)+(2/x(4))+...Guess an expression, in terms of n, for x(n). Then, by induction or otherwise, prove the correctness of your guess.


STEP 2 - 2018, Q6i): Find all pairs of positive integers (n, p), where p is a prime number, that satisfy n! + 5 = p .


Differentiate: f(x)=(ax^2 + bx + c) ln(x + (1+x^2)^(1/2)) + (dx + e) (1 + x^2)^(1/2). Hence integrate i) ln(x + (1 + x^2)^(1/2)), ii) (1 + x^2)^(1/2), iii) x ln(x + (1 + x^2)^(1/2)).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning