Show that i^i = e^(-pi/2).

This question is very similar to differentiating x^x and the method for tackling it is quite common when powers are involved. We want to show that i^i=e^(-pi/2). Start by writing z=i^i (act like we do not know what i^i is yet). A number raised to power of i is very strange. So take logarithms on both sides:z=i^i --> ln(z)=ln(i^i)=iln(i) using properties of logarithms.Now we have to figure out what ln(i) is. Recalling Euler's identity e^ix=cos(x)+isin(x) we remember that i=e^(ipi/2). ln is the inverse of exponential so it makes sense that ln(i)=ln(e^(ipi/2))=ipi/2. So ln(z)=i*(i*pi/2)=-pi/2. So z=e^(-pi/2). Thus i^i=e^(-pi/2).

JP
Answered by John P. STEP tutor

6394 Views

See similar STEP University tutors

Related STEP University answers

All answers ▸

Let y=arcsin(x)/sqrt(1-x^2). Show that (1-x^2) y'-xy-1=0, and prove that, for all integers n>=0, (1-x^2)y^{n+2}-(2n+3)xy^{n+1} -(n+1)^2 y^{n}=0. (Superscripts denote repeated differentiation)


Find h(x), for x≠0, x≠1, given that: h(x)+h(1/(1−x))=1−x−1/(1−x)


What is the largest positive integer that always divides n^5-n^3 for n a natural number.


Find 100 consecutive natural numbers, each of which is composite


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences