Show that i^i = e^(-pi/2).

This question is very similar to differentiating x^x and the method for tackling it is quite common when powers are involved. We want to show that i^i=e^(-pi/2). Start by writing z=i^i (act like we do not know what i^i is yet). A number raised to power of i is very strange. So take logarithms on both sides:z=i^i --> ln(z)=ln(i^i)=iln(i) using properties of logarithms.Now we have to figure out what ln(i) is. Recalling Euler's identity e^ix=cos(x)+isin(x) we remember that i=e^(ipi/2). ln is the inverse of exponential so it makes sense that ln(i)=ln(e^(ipi/2))=ipi/2. So ln(z)=i*(i*pi/2)=-pi/2. So z=e^(-pi/2). Thus i^i=e^(-pi/2).

Answered by John P. STEP tutor

4627 Views

See similar STEP University tutors

Related STEP University answers

All answers ▸

Suppose that 3=2/x(1)=x(1)+(2/x(2))=x(2)+(2/x(3))=x(3)+(2/x(4))+...Guess an expression, in terms of n, for x(n). Then, by induction or otherwise, prove the correctness of your guess.


Let y=arcsin(x)/sqrt(1-x^2). Show that (1-x^2) y'-xy-1=0, and prove that, for all integers n>=0, (1-x^2)y^{n+2}-(2n+3)xy^{n+1} -(n+1)^2 y^{n}=0. (Superscripts denote repeated differentiation)


Find h(x), for x≠0, x≠1, given that: h(x)+h(1/(1−x))=1−x−1/(1−x)


Let p and q be different primes greater than 2. Prove that pq can be written as difference of two squares in exactly two different ways.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy