Compute the derivative of arcsin(x).

To compute the derivative of arcsin(x) we use the fact that it is the inverse of sine. Write y=arcsin(x). We want dy/dx. Taking sin on both sides yields sin(y)=x. Use implicit differentiation to differentiate both sides with respect to x. We obtain cos(y)*(dy/dx)=1 --> dy/dx=1/cos(y). Now sin(y)=x and we have the pythagorean identity sin^2(y)+cos^2(y)=1. This gives cos^2(y)=1-sin^2(y)=1-x^2 and so cos(y)=sqrt(1-x^2) (reason for choosing +sign is that cos(y)>0 on range of y=arcsin(x)). Thus dy/dx=1/sqrt(1-x^2). So derivative of arcsin(x) is 1/sqrt(1-x^2).

JP
Answered by John P. Further Mathematics tutor

4224 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

How do I know when I should be using the Poisson distribution?


Whats the derivative of sin(3x)?


Write (1+2i) /(2-i) in form x+iy


Use de Moivre’s theorem to show that, (sin(x))^5 = A sin(5x) + Bsin(3x) + Csin(x), where A , B and C are constants to be found.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences