Compute the derivative of arcsin(x).

To compute the derivative of arcsin(x) we use the fact that it is the inverse of sine. Write y=arcsin(x). We want dy/dx. Taking sin on both sides yields sin(y)=x. Use implicit differentiation to differentiate both sides with respect to x. We obtain cos(y)*(dy/dx)=1 --> dy/dx=1/cos(y). Now sin(y)=x and we have the pythagorean identity sin^2(y)+cos^2(y)=1. This gives cos^2(y)=1-sin^2(y)=1-x^2 and so cos(y)=sqrt(1-x^2) (reason for choosing +sign is that cos(y)>0 on range of y=arcsin(x)). Thus dy/dx=1/sqrt(1-x^2). So derivative of arcsin(x) is 1/sqrt(1-x^2).

JP
Answered by John P. Further Mathematics tutor

5460 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

The plane Π contains the points (1, 2, 3), (0, 1, 2) and (2, 3, 0). What is the vector equation of the plane? and what is the cartesian equation of the plane?


Integrate ln(x) with respect to x.


Find all the cube roots of 1


Are the integers a group under addition? How about multiplication?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning