Compute the derivative of arcsin(x).

To compute the derivative of arcsin(x) we use the fact that it is the inverse of sine. Write y=arcsin(x). We want dy/dx. Taking sin on both sides yields sin(y)=x. Use implicit differentiation to differentiate both sides with respect to x. We obtain cos(y)*(dy/dx)=1 --> dy/dx=1/cos(y). Now sin(y)=x and we have the pythagorean identity sin^2(y)+cos^2(y)=1. This gives cos^2(y)=1-sin^2(y)=1-x^2 and so cos(y)=sqrt(1-x^2) (reason for choosing +sign is that cos(y)>0 on range of y=arcsin(x)). Thus dy/dx=1/sqrt(1-x^2). So derivative of arcsin(x) is 1/sqrt(1-x^2).

JP
Answered by John P. Further Mathematics tutor

4506 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Use induction to prove that for all positive integers n, f(n)=2^(3n+1)+3x5^(2n+1) is divisible by 17.


The complex number -2sqrt(2) + 2sqrt(6)I can be expressed in the form r*exp(iTheta), where r>0 and -pi < theta <= pi. By using the form r*exp(iTheta) solve the equation z^5 = -2sqrt(2) + 2sqrt(6)i.


Write down the equations of the three asymptotes and the coordinates of the points where the curve y = (3x+2)(x-3)/(x-2)(x+1) crosses the axes.


It is given that z = 3i(7-i)(i+1). Show that z can be written in the form 24i - k. State the integer k.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning