Given a differential equation (*), show that the solution curve is either a straight line or a parabola and find the equations of these curves.

This question is takes from the 2008 STEP I paper (Question 8). We are first given (dy/dx)^2 + x dy/dx + y = 0 where y is a function of x. Differentiating both sides of the equation with respect to x, gives: 2(dy/dx)(d2y/dx2) -dy/dx + x d2y/dx2 + dy/dx = 0 which gives 2(dy/dx)(d2y/dx2) + x d2y/dx2 = 0. Factorising out the second derivative term gives: (d2y/dx2) (2(dy/dx) - x) = 0. Since either factor must always equal 0 we have either d2y/dx2 = 0 or 2(dy/dx) - x = 0. For the first equation, integrating with respect to x twice gives: y = Ax + B (the equation of a straight line!). For the second, re-arranging for dy/dx = x/2 then integrating with respect to x gives y = 1/6 x^2 + C. Substituting these solutions (involving the arbitrary constant!) and their respective derivatives back into the original differential equation (*) (which we know we can do because the solution equation must satisfy the differential equation), gives us B = A^2 in the first case and C = 1/12 x^2 in the second.

SB
Answered by Samuel B. STEP tutor

1576 Views

See similar STEP University tutors

Related STEP University answers

All answers ▸

Show that if a polynomial with integer coefficients has a rational root, then the rational root must be an integer. Hence, show that x^n-5x+7=0 has no rational roots.


Find h(x), for x≠0, x≠1, given that: h(x)+h(1/(1−x))=1−x−1/(1−x)


Show that i^i = e^(-pi/2).


What do integrals and derivatives actually do/mean?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences