Given a differential equation (*), show that the solution curve is either a straight line or a parabola and find the equations of these curves.

This question is takes from the 2008 STEP I paper (Question 8). We are first given (dy/dx)^2 + x dy/dx + y = 0 where y is a function of x. Differentiating both sides of the equation with respect to x, gives: 2(dy/dx)(d2y/dx2) -dy/dx + x d2y/dx2 + dy/dx = 0 which gives 2(dy/dx)(d2y/dx2) + x d2y/dx2 = 0. Factorising out the second derivative term gives: (d2y/dx2) (2(dy/dx) - x) = 0. Since either factor must always equal 0 we have either d2y/dx2 = 0 or 2(dy/dx) - x = 0. For the first equation, integrating with respect to x twice gives: y = Ax + B (the equation of a straight line!). For the second, re-arranging for dy/dx = x/2 then integrating with respect to x gives y = 1/6 x^2 + C. Substituting these solutions (involving the arbitrary constant!) and their respective derivatives back into the original differential equation (*) (which we know we can do because the solution equation must satisfy the differential equation), gives us B = A^2 in the first case and C = 1/12 x^2 in the second.

SB
Answered by Samuel B. STEP tutor

1612 Views

See similar STEP University tutors

Related STEP University answers

All answers ▸

Find all positive integers n such that 12n-119 and 75n-539 are both perfect squares. Let N be the sum of all possible values of n. Find N.


Differentiate: f(x)=(ax^2 + bx + c) ln(x + (1+x^2)^(1/2)) + (dx + e) (1 + x^2)^(1/2). Hence integrate i) ln(x + (1 + x^2)^(1/2)), ii) (1 + x^2)^(1/2), iii) x ln(x + (1 + x^2)^(1/2)).


Prove that any number of the form pq, where p and q are prime numbers greater than 2, can be written as the difference of two squares in exactly two distinct ways.


Suppose that 3=2/x(1)=x(1)+(2/x(2))=x(2)+(2/x(3))=x(3)+(2/x(4))+...Guess an expression, in terms of n, for x(n). Then, by induction or otherwise, prove the correctness of your guess.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences