Explain why the equation tanx + cotx = 1 does not have real solutions.

First of all, we need to express tangent and cotangent in terms of sine and cosine using the identities: tanx = sinx / cosx and cotx = cosx / sinx. Substituting these expressions into the initial equation we get: sinx / cosx + cosx / sinx = 1. Summing the two terms on the right hand side we obtain: [(sinx)^2 + (cosx)^2] / (sinxcosx) = 1.
Now it is important to remember two fundamental trigonometry identities in order to simplify the right hand side further. These identities are: (sinx)^2 + (cosx)^2 = 1 and sin2x = 2
sinxcosx, which can be rearranged into sinxcosx = (1/2)*sin2x. Substituting these expressions in the numerator and denominator respectively, we get: 1/[(1/2)*sin2x] = 1. Rearranging: sin2x = 2. However, we know that the values of sine are between -1 and 1, hence there is no real value of x such that the equation is verified.  

SV
Answered by Sara V. Further Mathematics tutor

16557 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Are we able to represent linear matrix transformations with complex numbers?


What are Taylor series used for?


Solve the second order differential equation d^2y/dx^2 - 4dy/dx + 5y = 15cos(x), given that when x = 0, y = 1 and when x = 0, dy/dx = 0


Find the general solution to the differential equation: d^2y/dx^2 - 8 dy/dx +16y = 2x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning