What is the minimum initial velocity necessary for an object to leave Earth?

The problem can be easily solved using energy formulas. The only force that acts on the departing object is the gravitational force, which is conservative. Therefore the total energy is conserved on the trajectory:E=mv2/2-GmM/r=ct.The energy on the surface of the planet is:E=mv2i/2-GmM/R where vi is the initial velocity and R is the radius of Earth.At infinity(where the objects eventually gets since it leaves Earth):E=mv2f/2 where vf is the final velocity, which will be set to 0 in order to minimise the initial velocity.Equating the energies of the two positions we get:mv2i/2-GmM/R=0vi=(2GM/R)1/2 After introducing the values for the gravitational constant, mass and radius of Earth we get the final velocity:vi=11.2 km/s

LS
Answered by Leontica S. Physics tutor

2079 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

An ideal gas at a temperature of 22 C is trapped in a metal cylinder of volume 0.2 m^3 at a pressure of 1.6x10^6 Pa. The gas has a molar mass of 4.3 x 10^(-2) kg mol^(-1). Calculate the density of the gas in the cylinder.


How and why does a geostationary satellite stay above the same point on the Earths surface?


What is a vector?


How many fission event occur per second if a Uranium 235 Nuclear Reactor outputs 210MW of energy? Average Binding Energy per Nucleon of Uranium 235- 7.6 MeV Average Binding Energy per Nucleon of Products-8.5 MeV


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning