How would you differentiate x^x?

To start off with, we have the expression y = x^x and we want to differentiate it. A clever way to do this would be to first remember implicit differentiation and start by taking the natural logarithm of both the sides giving us ln y = ln x^x. Now we want to remember the power property of logarithms which says that ln(a)^b = b * ln(a). Hence, we can write the expression as ln y = x * ln x. Now we diffenrentiate both sides and obtain 1/y * dy/dx = 1 * ln x + x * 1/x. This gets us (dy/dx)/y = ln x + 1. Now taking y to the other side we are left with dy/dx = (ln x + 1)y which is equivalent to dy/dx = x^x(ln x + 1).

AD
Answered by Akhil D. Further Mathematics tutor

2868 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

Why does the discriminant b^2-4ac determine the number of roots of the quadratic equation ax^2+bx+c=0?


What is the distance between two points with x-coordinates 4 and 8 on the straight line with the equation y=(3/4)x-2


Why is it that when 'transformation A' is followed by 'transformation B', that the combined transformation is BA and not AB?


Find the gradient of the line x^2 + 3x - 6 at the point (5,34)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning