How would you differentiate x^x?

To start off with, we have the expression y = x^x and we want to differentiate it. A clever way to do this would be to first remember implicit differentiation and start by taking the natural logarithm of both the sides giving us ln y = ln x^x. Now we want to remember the power property of logarithms which says that ln(a)^b = b * ln(a). Hence, we can write the expression as ln y = x * ln x. Now we diffenrentiate both sides and obtain 1/y * dy/dx = 1 * ln x + x * 1/x. This gets us (dy/dx)/y = ln x + 1. Now taking y to the other side we are left with dy/dx = (ln x + 1)y which is equivalent to dy/dx = x^x(ln x + 1).

AD
Answered by Akhil D. Further Mathematics tutor

2317 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

Solve the simultaneous equations xy=2 and y=3x+5.


A curve is defined by the equation y = (x + 3)(x – 4). Find the coordinates of the turning point of the curve.


GCSE or A-level Maths: How can I find the x and y intercepts of a cubic function?


Given a^2 < 4 and a+2b = 8. Work out the range of possible values of b. Give your answer as an inequality.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences