find an expression for the sum of the series of 1 + 1/2cosx + 1/4cos2x +1/8cos3x + ......

Firstly we can use the fact that cosx is the real part of e^ix. This means that the series above is the real part of the infinite series 1 + 1/2e^ix + 1/4e^2ix + ...... This means that we have an infinite geometric series with starting term 1, and common ratio 1/2e^ix. since the modulus of the common ratio is 1/2 which is <1 , we can use the formula for an infinite convergent geometric series, Thus leaving us with the term of 1/(1 - 1/2e^ix). We can then use a useful property of the multiplication of exponentials to give us some insight, shown in a moment. We multiply the top and bottom of the fraction by (1 - 1/2e^-ix), the denominator expand out to give: 1 - 1/2(e^ix + e^-ix) + (1/4e^ix)(e^-ix), using euler's formula and the laws of the multiplications of exponentials we get: 1 - 1/2(2cosx) + 1/4, simplifying to: 5/4 - cosx. The real part of the numerator (1 - 1/2e^-ix) is 1 - 1/2cosx, therefore the sum of the trigonometric series is (1 - 1/2cosx)/(5/4 - cosx), simplifying to (4-2cosx)/(5-4cosx)

NK
Answered by Nima K. Further Mathematics tutor

4940 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

How do I find the vector/cross product of two three-dimensional vectors?


Solve x^3=1 giving all the roots between -pi<=theta<=pi in exponential form


Find the Taylor Series expansion of tan(x) about π/4 up to the term in terms of (x-π/4)^3.


It is given that z = 3i(7-i)(i+1). Show that z can be written in the form 24i - k. State the integer k.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences