A car of mass m is travelling at a speed v around a circular track of radius r banked at an angle θ. (a) What is the centripetal acceleration of the car? (b) What is the normal force acting on the car? (c) If θ = 45°, r = 1 km what is the maximum speed?

(a) The formula for the centripetal acceleration of an object undergoing circular motion at a radius r and speed v is a = v^2/r so as F = ma the centripetal force is F = mv^2/r. 2 marks By drawing a diagram, labelling the forces including weight (W = mg) and the normal force (N) and knowing that these forces must add to the centripetal force (F = mv^2/r) horizontally and must cancel vertically (as the car is not accelerating vertically there can be no net force) we can first show that the weight must balance the vertical component of N. So N cosθ = mg therefore N = mg/ cosθ. 6 marks By balancing the horizontal component of the normal force N sinθ and the centripetal force F = mv^2/r we can show that N sinθ = mv^2/r as N = mg/ cosθ then mg tanθ = mv^2/r cancelling the masses on both sides of the equation we show that v^2 = g r tanθ so the maximum speed is v =  (g r tanθ) as g = 10 m/s^2, r = 1 km = 1000 m and tan45° = 1. The maximum speed v = √ (1000 × 10 × 1) = √ 10000 = 100 m/s. [6 marks]If the car went any faster than 100 m/s the horizontal component of the normal force would not be large enough to keep the car travelling in circular motion so the car would come off the track unless another force besides the normal force was present. One force that can do this is the friction between the tyres and the track which we have neglected.

JM
Answered by Jack M. Physics tutor

6872 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

How do you work out the work out the current through resistors in parallel?


A small ball is projected with speed 15 m/s at an angle of 60 degrees above the horizontal. Find the distance from the point of projection of the ball at the instant when it is travelling horizontally.


The braking distance of a road train travelling at 15m/s is 70m. Assuming that the same braking force is applied at all speeds, show that the braking distance of a road train when travelling at 25m/s is about 190m.


Calculate the length of a 120m (as measured by the astronaut) spaceship travelling at 0.85c as measured by a stationary observer


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning