Given that a light ray enters a glass prism at angle of 50 degrees from the normal and is refracted to an angle of 30 degrees from the normal, calculate the speed of light in glass.

Answer: 1.96108ms-1.Snell's law tells us that n1sin(x1)= n2 sin(x2) where x is the angle of a light ray from the normal. Air can be assumed to have a refractive index of 1. Therefore, sin(x1) = n2 sin(x2). This means that the refractive index of glass can be found to be sin(x1)/sin(x2). The refractive index of a substance is given as the speed of light in a vacuum divided by the speed of light whilst travelling through the substance. Substituting n2 to be c/v gives c/v = sin(x1)/sin(x2). The speed of light in glass can be found by rearranging this equation so that velocity is the subject of the equation. This gives v= c sin(x2)/sin(x1). Putting in the values for the two angles gives that the speed of light in glass is equal to c* sin(30)/sin(50) which is equal to 1.96*108ms-1.

CH
Answered by Charlie H. Physics tutor

3201 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Define the resistivity of a metal wire


What is the angular speed of a car wheel of diameter 0.400m when the speed of the car is 108km/h?


A cricketer throws a ball vertically upwards so that the ball leaves his hands at a speed of 25 m/s. Calculate the maximum height reached by the ball, the time taken to reach max. height, and the speed of the ball when it is at 50% max. height.


State what is meant by isotopes?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning