Express (X²-16)/(X-1)(X+3) in partial fractions

(X2-16)/(X-1)(X+3) can be expressed as partial fractions as it is equivalent to A + B/(X-1) + C/(X+3) giving us : (X2-16)/(X-1)(X+3)≡ A + B/(X-1) +C/X+3). By multiplying both sides of this equation by (X-1) and (X+3) you get X2-16≡A(X-1)(X+3) + B(X+3) +C(X-1). This must be true for all values so to work out the variables A, B and C you start off by looking at the values of X which make the value of the bracket 0. These are X=1 and X=-3. When X=1: -15=4B, therefore B=-15/4. When X=-3: -7=-4C, therefore C=7/4. When the brackets are fully expanded the only X2 term is AX2 , therefore AX2=X2, therefore A=1.

SP
Answered by Sam P. Further Mathematics tutor

2301 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Prove by induction that, for all integers n >=1 , ∑(from r=1 to n) r(2r−1)(3r−1)=(n/6)(n+1)(9n^2 -n−2). Assume that 9(k+1)^2 -(k+1)-2=9k^2 +17k+6


Find the eigenvalues and corresponding eigenvectors of the following matrix: A = [[6, -3], [4, -1]]. Hence represent the matrix in diagonal form.


What are imaginary numbers and why do we use them?


You are given a polynomial f, where f(x)=x^4 - 14x^3 + 74 x^2 -184x + 208, you are told that f(5+i)=0. Express f as the product of two quadratic polynomials and state all roots of f.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences