How De Broglie's wavelength found/derived?

Through energy conservation, we can determine that no energy is lost and thereforeKinetic energy = Electrical energyAs a result the following equation is present where both sides represent energy:(m*(v^2))/2 = eVHere: ·        m = the mass of the electron·        v = the speed of the electron·        e = charge on a single electron·        V = voltageBy multiplying both formulae by (m/m) or 1, we can derive the following equations:((mv)^2)/(2m) = eV(p^2)/(2m) = eVHere, p = the momentum of the electronWe also know another equation for energy that leads us to determine:Energy = (hc)/ λ = m(c^2)Here: ·        h = Planck’s constant·        c = the speed of light·        λ = De Broglie’s wavelengthBy cancelling out c from both sides of the equation we can arrive at the equations:h/λ = mch/λ = pWe then substitute this into the earlier equation to arrive at the following:h^2/(2m*(λ^2)) = eV(2m*(λ^2))/h^2 = 1/(eV)(λ^2) = (h^2)/(2meV)λ = h/((2me*V)^(1/2))The final equation represents De Broglie’s wavelength.

AA
Answered by Abdur-Rahman A. Physics tutor

1469 Views

See similar Physics IB tutors

Related Physics IB answers

All answers ▸

A ball mass 2kg rests on a slope of angle 60 degrees. If it is stationary, calculate the coefficient of static friction


Why is centripetal acceleration directed inwards to the centre of the circle during centripetal motion? If I’m in a car while it’s cornering, I seem to be pushed outwards away from the centre, not inwards.


If a body is projected from the ground at the angle of 30 degrees to the horizontal with the initial velocity of 20 m/s, what maximum height and range is it going to reach?


How do you tackle a general mechanics question?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences