How De Broglie's wavelength found/derived?

Through energy conservation, we can determine that no energy is lost and thereforeKinetic energy = Electrical energyAs a result the following equation is present where both sides represent energy:(m*(v^2))/2 = eVHere: ·        m = the mass of the electron·        v = the speed of the electron·        e = charge on a single electron·        V = voltageBy multiplying both formulae by (m/m) or 1, we can derive the following equations:((mv)^2)/(2m) = eV(p^2)/(2m) = eVHere, p = the momentum of the electronWe also know another equation for energy that leads us to determine:Energy = (hc)/ λ = m(c^2)Here: ·        h = Planck’s constant·        c = the speed of light·        λ = De Broglie’s wavelengthBy cancelling out c from both sides of the equation we can arrive at the equations:h/λ = mch/λ = pWe then substitute this into the earlier equation to arrive at the following:h^2/(2m*(λ^2)) = eV(2m*(λ^2))/h^2 = 1/(eV)(λ^2) = (h^2)/(2meV)λ = h/((2me*V)^(1/2))The final equation represents De Broglie’s wavelength.

AA
Answered by Abdur-Rahman A. Physics tutor

2014 Views

See similar Physics IB tutors

Related Physics IB answers

All answers ▸

How much velocity should a small toy rocket, weighing 10kg, acquire in order to escape the Earth's gravitational field? (Neglect any type of friction with the atmosphere)


A ball of mass m with initial velocity u rebounds from a wall, with final velocity v. Using Newton's laws of motion explain forces acting in the system.


Why cant I use the same expression for doppler effect when the source is in motion and when the listener is in motion?


What is the difference between the centripetal acceleration and the centrifugal force?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning