Find the coordinates of the stationary points on the curve y=x^5 -15x^3

dy/dx = 5x4-45xby multiplying each term by the power and then decreasing the power by oneAt stationary points, dy/dx=0 since the function is neither increasing nor decreasing at a stationary point5x4-45x2=05x2(x2-9)=05x2(x-3)(x+3)=0 (Difference of two squares)Stationary points at x=0, x=3 and x=-3Plug each value into the original equation to get y coordinatesGet (0,0), (3, -162), (-3, 162)

SD
Answered by Shavon D. Further Mathematics tutor

5528 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

f'(x) = 3x^2 - 5cos(3x) + 90. Find f(x) and f''(x).


A straight line passes trough the points A(-4;7); B(6;-5); C(8;t). Use an algebraic method to work out the value of t.


If y=(x^2)*(x-10), work out dy/dx


How can I find the equation of a straight line on a graph?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning