Find the coordinates of the stationary points on the curve y=x^5 -15x^3

dy/dx = 5x4-45xby multiplying each term by the power and then decreasing the power by oneAt stationary points, dy/dx=0 since the function is neither increasing nor decreasing at a stationary point5x4-45x2=05x2(x2-9)=05x2(x-3)(x+3)=0 (Difference of two squares)Stationary points at x=0, x=3 and x=-3Plug each value into the original equation to get y coordinatesGet (0,0), (3, -162), (-3, 162)

SD
Answered by Shavon D. Further Mathematics tutor

4959 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

The curve C is given by the equation x^4 + x^2y + y^2 = 13. Find the value of dy/dx at the point (-1,3). (A-level)


Show that (n^2) + (n+1)^2 + (n+2)^2 = 3n^2 + 6n + 5, Hence show that the sum of 3 consecutive square numbers is always 2 away from a multiple of 3.


In a chess club there are x boys and y girls. If ten more boys join and one more girl joins, there is an equal amount of boys and girls. Knowing that y = 2x+2, Calculate x and y. [4 marks]


Find the stationary points of y=x^3 + 3x^2 - 9x - 4


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences