Find the coordinates of the stationary points on the curve y=x^5 -15x^3

dy/dx = 5x4-45xby multiplying each term by the power and then decreasing the power by oneAt stationary points, dy/dx=0 since the function is neither increasing nor decreasing at a stationary point5x4-45x2=05x2(x2-9)=05x2(x-3)(x+3)=0 (Difference of two squares)Stationary points at x=0, x=3 and x=-3Plug each value into the original equation to get y coordinatesGet (0,0), (3, -162), (-3, 162)

SD
Answered by Shavon D. Further Mathematics tutor

5505 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

Consider the Matrix M (below). Find the determiannt of the matrix M by using; (a) cofactor expansion along the first row, (b) cofactor expansion along the second column


y=(6x^9 +x^8)/(2x^4), work out the value of d^2y/dx^2 when x=0.5


Point A lies on the curve: y=x^2+5*x+8. The x-coordinate of A is -4. What is the equation of the normal to the curve at A?


To differentiate a simple equation: y= 4x^3 + 7x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning