Find the coordinates of the stationary points on the curve y=x^5 -15x^3

dy/dx = 5x4-45xby multiplying each term by the power and then decreasing the power by oneAt stationary points, dy/dx=0 since the function is neither increasing nor decreasing at a stationary point5x4-45x2=05x2(x2-9)=05x2(x-3)(x+3)=0 (Difference of two squares)Stationary points at x=0, x=3 and x=-3Plug each value into the original equation to get y coordinatesGet (0,0), (3, -162), (-3, 162)

SD
Answered by Shavon D. Further Mathematics tutor

5417 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

Show that (n^2) + (n+1)^2 + (n+2)^2 = 3n^2 + 6n + 5, Hence show that the sum of 3 consecutive square numbers is always 2 away from a multiple of 3.


A curve is mapped by the equation y = 3x^3 + ax^2 + bx, where a is a constant. The value of dy/dx at x = 2 is double that of dy/dx at x = 1. A turning point occurs when x = -1. Find the values of a and b.


A curve has equation y = ax^2 + 3x, when x= -1, the gradient of the curve is -5. Work out the value of a.


Given that xy=2 and y=3x+5, find x and y. Do not use trial and improvement.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning