Find the coordinates of the stationary points on the curve y=x^5 -15x^3

dy/dx = 5x4-45xby multiplying each term by the power and then decreasing the power by oneAt stationary points, dy/dx=0 since the function is neither increasing nor decreasing at a stationary point5x4-45x2=05x2(x2-9)=05x2(x-3)(x+3)=0 (Difference of two squares)Stationary points at x=0, x=3 and x=-3Plug each value into the original equation to get y coordinatesGet (0,0), (3, -162), (-3, 162)

SD
Answered by Shavon D. Further Mathematics tutor

5133 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

The equation of a curve is y = x^2 - 5x. Work out dy/dx


A curve has equation y = ax^2 + 3x, when x= -1, the gradient of the curve is -5. Work out the value of a.


l1 and l2 are tangents of a circle. l1 intersects the circle at (3-√3,5) with a gradient of √3, and l2 intersects the circle at (3+√2,4+√2) with a gradient of -1. Find the centre of the circle, and hence find the radius of the circle.


A curve has equation: y = x^3 - 3x^2 + 5. Show that the curve has a minimum point when x = 2.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences