How can we explain the standing waves on a string?

When a wave reaches the end of a string, it is reflected and inverted, so in a fixed string in which we've caused vibrations, such as a guitar string, we have two sinusoidal waves travelling in opposite directions. In certain places, where the two waves are exactly out of phase, we observe destructive interference (crest meets trough, and the two waves cancel each other out) and the point remains static. These points are called nodes. Midway between them, we can observe the opposite: constructive interference (where the two waves coincide and produce an even bigger displacement); these points of greatest amplitude are called antinodes. The fixed ends of the string are always nodes, and the number of nodes and antinodes depends on how long the string is relative to the wavelength. For example, in a string which is one-half wavelength long, we have two nodes (at both ends of the string) and one antinode; if the string is one wavelength long, we have three nodes and two antinodes, and so on.

BA
Answered by Boris A. Physics tutor

2259 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

What is an ohmic resistor? How to check if a resistor is ohmic?


A body with speed v is projected from the surface of the earth(mass M & radius R). Find the maximum distance from the earth that this body reaches before returning back to earth, as a function of the initial speed v, M, R and the gravitational constant G


How many fission event occur per second if a Uranium 235 Nuclear Reactor outputs 210MW of energy? Average Binding Energy per Nucleon of Uranium 235- 7.6 MeV Average Binding Energy per Nucleon of Products-8.5 MeV


State assumptions made about the motion of the molecules in a gas in the derivation of the kinetic theory of gases equation.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences