Describe an experiment, using a pendulum, which can be conducted to investigate g, acceleration due to gravity.

Set up a clamp stand with pendulum bob hanging from a thread attached to the top of the clamp stand. Set up a protractor where the thread is attached to the stand. Set up a fiduciary marker as a point of reference. Using a metre ruler, start the length of the thread off at 1.0 m. Measure the length of thread from the centre of the pendulum bob to where it is held in place. Using the protractor at the top of the clamp stand, displace the pendulum by 10 degrees. Release the pendulum and using a stopwatch and the fiduciary marker, time 20 oscillations. Divide this time by 20 to give you the time period. Repeat this three times and calculate an average. Keeping the angle of release and using the same bob, reduce the length of thread by 0.1m and repeat the experiment. Continue up to a length of 0.1m. Tabulate the data, plot a graph of T2 against L and plot a line of best fit, checking if it goes through the origin ( which it should ). Calculate the gradient and divide 4Pi2 by the gradient. This value should be g, 9.81 m/s2. Calculate percentage difference and evaluate the experiment.

IS
Answered by Ilyas S. Physics tutor

3999 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

How come nuclei become more unstable the bigger they are?


The friction coefficient of Formula 1 car tyres are around 1.7 in dry weather. Assuming sufficient power from the engine, calculate the theoretical best 0-100 km/h acceleration time in seconds. (neglect downforce, g=9.81m/s^2)


The mercury atoms in a fluorescent tube are excited and then emit photons in the ultraviolet region of the electromagnetic spectrum. Explain (i) how the mercury atoms become excited and (ii) how the excited atoms emit photons.


What is the angular speed of a car wheel of diameter 0.400m when the speed of the car is 108km/h?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning