Prove that ∑(1/(r^2 -1)) from r=2 to r=n is equal to (3n^2-n-2)/(4n(n+1)) for all natural numbers n>=2.

To prove the above statement we will be using proof by induction as this is the easiest way to prove that the statement holds for all natural numbers n>=2. Firstly, when proving by induction there are three main steps to consider: 1) Base case: Prove the statement holds for n = 2 2) Inductive step: Assume the statement is true for n = k and thus prove it is true for n = k+1 3) Concluding the proof 1) For n = 2: LHS: ∑(1/(r^2 -1)) = 1/(2^2-1) = 1/3 RHS: (3n^2-n-2)/(4n(n+1)) = (12-2-2)/(423) = 1/3 Thus true for n=2 2) Assume true for n=k. To prove true for n=k+1, substitute n=k+1 in LHS: ∑{r=2,k+1} (1/(r^2 -1)) = 1/((k + 1)^2 - 1) + ∑{r=2,k} (1/(r^2 - 1)) = 1/((k + 1)^2 - 1) + (3k^2 - k - 2)/(4k(k + 1)) as we have assumed true for n=k = (4(k + 1)+(3k^2 - k - 2)(k + 2))/(4k(k + 1)(k + 2)) by expanding and simplifying = (k(3k + 5))/(4(k + 1)(k + 2)) Now substitute n=k+1 in RHS: (3(k + 1)^2 - (k + 1) - 2)/(4(k + 1)((k + 1) + 1)) = (k(3k + 5))/(4(k + 1)(k + 2)) as required. Thus true for n=k+1 3) The concluding statement:From 1) the statement is true for n=2. Since the statement is true for n=k by 2) it is true for n=k+1, thus by the principle of mathematical induction it is true for all natural numbers n>=2.

SP
Answered by Sharvaree P. Further Mathematics tutor

3651 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Let I(n) = integral from 1 to e of (ln(x)^n)/(x^2) dx where n is a natural number. Firstly find I(0). Show that I(n) = -(1/e) + n*I(n-1). Using this formula find I(1).


If the complex number z = 5 + 4i, work out 1/z.


Find the shortest distance between the lines r = (1, 5, 6) + y(-2, -1, 0) and r = (1, 7, -3) + z(2, 0, 4)


Find the inverse of the general 2x2 matrix A= ([a, b],[c, d]) when does this inverse exist?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences