Prove that ∑(1/(r^2 -1)) from r=2 to r=n is equal to (3n^2-n-2)/(4n(n+1)) for all natural numbers n>=2.

To prove the above statement we will be using proof by induction as this is the easiest way to prove that the statement holds for all natural numbers n>=2. Firstly, when proving by induction there are three main steps to consider: 1) Base case: Prove the statement holds for n = 2 2) Inductive step: Assume the statement is true for n = k and thus prove it is true for n = k+1 3) Concluding the proof 1) For n = 2: LHS: ∑(1/(r^2 -1)) = 1/(2^2-1) = 1/3 RHS: (3n^2-n-2)/(4n(n+1)) = (12-2-2)/(423) = 1/3 Thus true for n=2 2) Assume true for n=k. To prove true for n=k+1, substitute n=k+1 in LHS: ∑{r=2,k+1} (1/(r^2 -1)) = 1/((k + 1)^2 - 1) + ∑{r=2,k} (1/(r^2 - 1)) = 1/((k + 1)^2 - 1) + (3k^2 - k - 2)/(4k(k + 1)) as we have assumed true for n=k = (4(k + 1)+(3k^2 - k - 2)(k + 2))/(4k(k + 1)(k + 2)) by expanding and simplifying = (k(3k + 5))/(4(k + 1)(k + 2)) Now substitute n=k+1 in RHS: (3(k + 1)^2 - (k + 1) - 2)/(4(k + 1)((k + 1) + 1)) = (k(3k + 5))/(4(k + 1)(k + 2)) as required. Thus true for n=k+1 3) The concluding statement:From 1) the statement is true for n=2. Since the statement is true for n=k by 2) it is true for n=k+1, thus by the principle of mathematical induction it is true for all natural numbers n>=2.

SP
Answered by Sharvaree P. Further Mathematics tutor

4152 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Use De Moivre's Theorem to show that if z = cos(q)+isin(q), then (z^n)+(z^-n) = 2cos(nq) and (z^n)-(z^-n)=2isin(nq).


It is given that f(x)=(x^2 +9x)/((x-1)(x^2 +9)). (i) Express f(x) in partial fractions. (ii) Hence find the integral of f(x) with respect to x.


Integrate xcos(x) with respect to x


A spring with a spring constant k is connected to the ceiling. First a weight of mass m is connected to the spring. Deduce the new equilibrium position of the spring, find its equation of motion and hence deduce its frequency f.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning