It is given that z = 3i(7-i)(i+1). Show that z can be written in the form 24i - k. State the integer k.

z = 3i(7-i)(i+1)= 3i(7i-i+7-i2 )= 3i(6i+8)= 18i2 +24 (1 method mark)= 24i-18 (1 method mark)k=18 (1 answer mark)

DT
Answered by Daniel T. Further Mathematics tutor

2115 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Prove that "6^n + 9" is divisible by 5 for all natural numbers.


Let E be an ellipse with equation (x/3)^2 + (y/4)^2 = 1. Find the equation of the tangent to E at the point P where x = √3 and y > 0, in the form ax + by = c, where a, b and c are rational.


What is the general solution to the equation d2y/dx2 + dy/dx - 2y = -3sinx + cosx (d2y/dx2 signals a second order derivative)


A curve has polar equation r = 1 + cos THETA for 0 <= THETA <= 2Pi. Find the area of the region enclosed by the curve


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning