It is given that z = 3i(7-i)(i+1). Show that z can be written in the form 24i - k. State the integer k.

z = 3i(7-i)(i+1)= 3i(7i-i+7-i2 )= 3i(6i+8)= 18i2 +24 (1 method mark)= 24i-18 (1 method mark)k=18 (1 answer mark)

DT
Answered by Daniel T. Further Mathematics tutor

2044 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Find the inverse of the general 2x2 matrix A= ([a, b],[c, d]) when does this inverse exist?


find all the roots to the equation: z^3 = 1 + i in polar form


Find the volume of revolution about the x-axis of the curve y=1/sqrt(x^2+2x+2) for 0<x<1


How do you differentiate arctan(x)?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning