How would you use the Integration Factor method to solve an ordinary first-order linear differential equation?

The word "ordinary" means that there are only two variables, "first-order" means that the highest derivative is the first derivative and "linear" means that the highest power of the function variable is 1. Therefore, the Integration Factor method is applicable.First, you get values with the function variable (y for dy/dx) on the left and the parameter variable (x for dy/dx) on the right. You integrate the coefficient of y with respect to x to get the "Integration Factor (IF)". Then, multiply both sides of the differential equation by IF. Here, you get y multiplied by IF equal to the integral of the right hand side of the new differential equation. Solve the integral and divide by IF to get y(x).

KC
Answered by Kelvin C. Further Mathematics tutor

2359 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Given that α= 1+3i is a root of the equation z^3 - pz^2 + 18z - q = 0 where p and q are real, find the other roots, then p and q.


Solve the differential equations dx/dt=2x+y+1 and dy/dt=4x-y+1 given that when t=0 x=20 and y=60. (A2 Further pure)


Find the equation of the tangent to the curve y = exp(x) at the point ( a, exp(a) ). Deduce the equation of the tangent to the curve which passes through the point (0,1) .


Write the Maclaurin’s series for f(x)=sin(3x)+e^x up to the third order


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences