A straight line passes trough the points A(-4;7); B(6;-5); C(8;t). Use an algebraic method to work out the value of t.

We can write the equation of a straight line like y=ax+b, where a and b are constants. If a point is on the line, the equation will be true for the x,y of the point.Now start with point A: 7 = (-4)a + b. Resolve this equation to b. Add (-4)a both side: 7+4a=b. Now see point B. (-5) = 6a+b. We know, that b=7+4a, so (-5) = 6a + 7 + 4a = 10a + 7. Substract 7 from both sides: (-12) = 10a, so divide by 10, and we get that -1.2 = a. From this we can calculate b: b = 7 + 4•(-1.2) = 7 - 4.8 = 2.2 = b.Now we need to resolve the equation t = 8a + b = 8•(-1.2) + 2.2 = (-9.6) + 2.2 = 7.4.So the result is t = 7.4.

MF
Answered by Márk F. Further Mathematics tutor

7090 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

How do you use derivatives to categorise stationary points?


Simplify fully the expression ( 7x^2 + 14x ) / ( 2x + 4 )


Lengths of two sides of the triangle and the angle between them are known. Find the length of the third side and the area of the triangle.


Solving equations with unknown in both sides


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning