Find the shortest distance between the lines r = (1, 5, 6) + y(-2, -1, 0) and r = (1, 7, -3) + z(2, 0, 4)

Vector joining the two lines = (1, 5, 6) - (1, 7, -3) = (0, -2, 9)Normal vector to the two lines = (-2, -1, 0) x (2, 0, 4) = (-4, 8, 2) = 2(-2, 4, 1)Hence, using the dot product, shortest distance = (0, -2, 9) "dot" (-2, 4, 1) / sqrt(22 + 42 + 12) = -8 + 9 / sqrt(4 + 16 + 1) = 1/sqrt(21)

AH
Answered by Abhinav H. Further Mathematics tutor

2242 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

A particle is launched from the top of a cliff of height 87.5m at time t=0 with initial velocity 14m/s at 30 deg above the horizontal, Calculate: a) maximum height reached above bottom of cliff; b)horizontal distance travelled before hitting the ground.


How do you deal with 3 simultaneous equations? (Struggling with Q7 of AQA specimen paper 1)


How do you calculate the derivative of cos inverse x?


Solve this equation: x^2 + 2x + 2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning