Find the shortest distance between the lines r = (1, 5, 6) + y(-2, -1, 0) and r = (1, 7, -3) + z(2, 0, 4)

Vector joining the two lines = (1, 5, 6) - (1, 7, -3) = (0, -2, 9)Normal vector to the two lines = (-2, -1, 0) x (2, 0, 4) = (-4, 8, 2) = 2(-2, 4, 1)Hence, using the dot product, shortest distance = (0, -2, 9) "dot" (-2, 4, 1) / sqrt(22 + 42 + 12) = -8 + 9 / sqrt(4 + 16 + 1) = 1/sqrt(21)

AH
Answered by Abhinav H. Further Mathematics tutor

2137 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

How do I find the asymptotes of a curve?


Find roots 'a' and 'b' of the quadratic equation 2(x^2) + 6x + 7 = 0


Find the area of the surface generated when the curve with equation y=cosh(x) is rotated through 2 pi radians about the x axis, with 2<=x<=6


Given that k is a real number and that A = ((1+k k)(k 1-k)) find the exact values of k for which A is a singular matrix.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences