Let a and b be positive real numbers. If x^2 + y^2<=1 then what is the largest that ax+by can get?

By the Cauchy-Schwartz inequality, we have (x2 + y2)(a2+b2) >= (ax+by)2.
This can be transformed into (ax+by)2 <= (x2 + y2)(a2+b2) <= 1 * (a2+b2) <= (a2+b2). Hence ax + by <= sqrt(a^2 + b^2) and the equality is achieved when there exists ay = bx.

TD
Answered by Tutor135762 D. MAT tutor

3987 Views

See similar MAT University tutors

Related MAT University answers

All answers ▸

How many solutions does the equation 2sin^2(x) - 4sin(x) + cos^2(x) + 2 = 0 have in the domain 0<x<2pi


The inequality x^4 < 8x^2 + 9 is satisfied precisely when...


Why does sum(1/n) diverge but sum(1/n^2) converge?


I've been doing specimen MAT admission test - but I couldn't figure out the answer to the parts III, and IV of question 6 (https://www.maths.ox.ac.uk/system/files/attachments/speca.pdf). Is there some kind of a trick?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning