Let a and b be positive real numbers. If x^2 + y^2<=1 then what is the largest that ax+by can get?

By the Cauchy-Schwartz inequality, we have (x2 + y2)(a2+b2) >= (ax+by)2.
This can be transformed into (ax+by)2 <= (x2 + y2)(a2+b2) <= 1 * (a2+b2) <= (a2+b2). Hence ax + by <= sqrt(a^2 + b^2) and the equality is achieved when there exists ay = bx.

TD
Answered by Tutor135762 D. MAT tutor

3391 Views

See similar MAT University tutors

Related MAT University answers

All answers ▸

The inequality x^4 < 8x^2 + 9 is satisfied precisely when...


Let r and s be integers. Then ( 6^(r+s) x 12^(r-s) ) / ( 8^(r) x 9^(r+2s) ) is an integer when: (a) r+s <= 0, (b) s <= 0, (c) r <= 0, (d) r >= s.


How would I go about graph sketching?


If a_(n+1) = a_(n) / a_(n-1), find a_2017


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences