Let a and b be positive real numbers. If x^2 + y^2<=1 then what is the largest that ax+by can get?

By the Cauchy-Schwartz inequality, we have (x2 + y2)(a2+b2) >= (ax+by)2.
This can be transformed into (ax+by)2 <= (x2 + y2)(a2+b2) <= 1 * (a2+b2) <= (a2+b2). Hence ax + by <= sqrt(a^2 + b^2) and the equality is achieved when there exists ay = bx.

TD
Answered by Tutor135762 D. MAT tutor

3488 Views

See similar MAT University tutors

Related MAT University answers

All answers ▸

Why does sum(1/n) diverge but sum(1/n^2) converge?


Let a and b be positive integers such that a+b = 20. What is the maximum value that (a^2)b can take?


The sequence xn is given by the formula x_n = n^3 − 9n^2 + 631. What is the largest value of n for which x_n > x_(n+1)?


When is the inequality x^4 < 8x^2 + 9 true?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences