Let a and b be positive real numbers. If x^2 + y^2<=1 then what is the largest that ax+by can get?

By the Cauchy-Schwartz inequality, we have (x2 + y2)(a2+b2) >= (ax+by)2.
This can be transformed into (ax+by)2 <= (x2 + y2)(a2+b2) <= 1 * (a2+b2) <= (a2+b2). Hence ax + by <= sqrt(a^2 + b^2) and the equality is achieved when there exists ay = bx.

TD
Answered by Tutor135762 D. MAT tutor

3824 Views

See similar MAT University tutors

Related MAT University answers

All answers ▸

Let f(x) = 2x^3 − kx^2 + 2x − k. For what values of the real number k does the graph y = f(x) have two distinct real stationary points? (MAT 2017 q1.A)


If a_(n+1) = a_(n) / a_(n-1), find a_2017


[based on MAT 2018 (G)] The curves y = x^2 + c and y^2 = x touch at a single point. Find c.


What is the square root of the imaginary number i?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning