Why is a pendulum with a bob of the same size but larger mass than another bob damped more lightly?

The heavier bob has more kinetic energy/potential energy/momentum for any given amplitude of the two pendulums due to its larger mass, as each of these three quantities depend linearly on mass. The damping is due to air resistance and seeing as the bobs are the same size, we must consider the energy (potential/kinetic). The heavier bob will lose a smaller percentage of its energy per oscillation so it is therefore less heavily damped than the lighter bob.
We can also visualise this through inertia, where inertia is the resistance an object has to a change in its state of motion. Since greater mass = greater inertia, the heavier bob will have greater opposition to something, air resistance in this case, changing its state of motion.

LS
Answered by Lucy S. Physics tutor

9978 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Why are electron volts used instead of Joules in Quantum Phenomena and how do you convert between the two?


I dont really understand the Rutherford experiment


A ball is thrown in the air with velocity of 50.0 m/s, assuming no air resistance calculate its maximum height.


With the help of a suitably labelled graph, explain what is meant by resonance of a mechanical system.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning