Why is a pendulum with a bob of the same size but larger mass than another bob damped more lightly?

The heavier bob has more kinetic energy/potential energy/momentum for any given amplitude of the two pendulums due to its larger mass, as each of these three quantities depend linearly on mass. The damping is due to air resistance and seeing as the bobs are the same size, we must consider the energy (potential/kinetic). The heavier bob will lose a smaller percentage of its energy per oscillation so it is therefore less heavily damped than the lighter bob.
We can also visualise this through inertia, where inertia is the resistance an object has to a change in its state of motion. Since greater mass = greater inertia, the heavier bob will have greater opposition to something, air resistance in this case, changing its state of motion.

LS
Answered by Lucy S. Physics tutor

9026 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Define a "Vector Quantity" and list 2 examples.


A block of ice slides down the full height from one side of a 1m high bowl and up the other side. Assuming frictionless motion and taking g as 9.81ms-2, find the speed of the block at the bottom of the bowl and the height it reaches on the the other side.


A yacht is sailing through water that is flowing due west at 2m/s. The velocity of the yacht relative to the water is 6m/s due south. The yacht has a resultant velocity of V m/s on a bearing of theta. Find V and theta


An electron is accelerated through a uniform electric field of strength, E= 20 [N/C]. Determine the speed after the the electron travels 0.5 m from rest.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences