Why is a pendulum with a bob of the same size but larger mass than another bob damped more lightly?

The heavier bob has more kinetic energy/potential energy/momentum for any given amplitude of the two pendulums due to its larger mass, as each of these three quantities depend linearly on mass. The damping is due to air resistance and seeing as the bobs are the same size, we must consider the energy (potential/kinetic). The heavier bob will lose a smaller percentage of its energy per oscillation so it is therefore less heavily damped than the lighter bob.
We can also visualise this through inertia, where inertia is the resistance an object has to a change in its state of motion. Since greater mass = greater inertia, the heavier bob will have greater opposition to something, air resistance in this case, changing its state of motion.

LS
Answered by Lucy S. Physics tutor

10072 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

What are the similarities and differences between gravitational and electric fields?


What is the difference between accuracy and precision?


A geostationary satellite is orbiting Earth, a) What is meant by a geostationary orbit? b) Calculate the height at which the satellite orbits above the surface of the Earth. The radius of the Earth is 6400km and its mass is 6x10^24 kg.


How does one calculate centripetal force?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning