Prove by mathematical induction that 2^(2n-1) + 3^(2n-1) is divisible by 5 for all natural numbers n.

First check that this works for n=1:2^(2x1 - 1) + 3^(2x1 - 1) = 2^1 +3^1 = 5 (so true for n=1)Now we assume this to work for any n = k.Assumption: 2^(2k-1) + 3^(2k-1) = 5a, where a is some integer constant.Now we check that this works for n = k + 1:2^(2(k+1)-1) + 3^(2(k+1)-1) (we try to manipulate this algebra so that we can get it in the form 5a)=2^(2k+2-1) + 3^(2k+2-1) = 2^2 x 2^(2k-1) + 3^2 x 3^(2k-1) = 4 x 2^(2k-1) + 9 x 3^(2k-1) = 9(2^(2k-1) + 3^(2k-1)) - 5(2^(2k-1)) (notice that we have our assumption, which we can write as 5a)= 9(5a) - 5(2^(2k-1)) = 5(9a - 2^(2k-1)) (9a - 2^(2k-1) is some integer constant, we can write this as b)=5bThis is true for n=1. If it is true for n=k, then we have shown it to be true for n=k+1 also. Therefore by mathematical induction it is true for all positive integers n.

KI
Answered by Kristina I. Further Mathematics tutor

11434 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Calculate: ( 2+i√(5) )( √(5)-i).


How do I express complex numbers in the form reiθ?


using an integrating factor, find the general solution of the differential equation dy/dx +y(tanx)=tan^3(x)sec(x)


When using the method of partial fractions how do you choose what type of numerator to use and how do you know how many partial fractions there are?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning