What is the escape velocity of an object leaving a planet mass M, radius R?

As the object leaves the surface of the planet, it loses kinetic energy and gains gravitational potential energy. Through conservation of energy we know the loss of kinetic energy must be equal to the gain of gravitational potential energy. This gives us an equation with initial kinetic energy minus final kinetic energy (as it is the loss of kinetic energy) on one side, and final GPE minus initial GPE on the other side, taking care to remember GPE is negative.
0.5mu2 - 0.5mv2 = (-GMm/r2) - (-GMm/r1)
0.5m(u2 - v2) = -GMm(1/r2 - 1/r1)
In order to have just enough velocity to escape, the velocity must be 0 at ininity. If it was any less it would just slowly fall back to the planet. So if we make r2 infinitely large, and v = 0, we get the following:
0.5m(u2) = -GMm(0 - 1/r1)
0.5mu2 = GMm/r1
We can cancel m:
0.5u2 = GM/r1
And rearrange for u:
u = (2GM/R)1/2

TR
Answered by Thomas R. Physics tutor

2418 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A phone is knocked off a table 800cm of the ground. If the phone is 650g a) what is the gravational potential of the phone? b)what speed will the phone hit the floor at? c)How long will it take for the phone to hit the floor?


Electrons moving in a beam have the same de Broglie wavelength as protons in a separate beam moving at a speed of 2.8 × 10^4 m/s . What is the speed of the electrons?


An electron of mass 9.11x10^(-31) is fired from an electron gun at 7x10^6 m/s. What size object will the electron need to interact with in order to diffract?


In a circuit with a thermistor and bulb, what happens to the brightness of the bulb as the temperature increases?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning