What is the escape velocity of an object leaving a planet mass M, radius R?

As the object leaves the surface of the planet, it loses kinetic energy and gains gravitational potential energy. Through conservation of energy we know the loss of kinetic energy must be equal to the gain of gravitational potential energy. This gives us an equation with initial kinetic energy minus final kinetic energy (as it is the loss of kinetic energy) on one side, and final GPE minus initial GPE on the other side, taking care to remember GPE is negative.
0.5mu2 - 0.5mv2 = (-GMm/r2) - (-GMm/r1)
0.5m(u2 - v2) = -GMm(1/r2 - 1/r1)
In order to have just enough velocity to escape, the velocity must be 0 at ininity. If it was any less it would just slowly fall back to the planet. So if we make r2 infinitely large, and v = 0, we get the following:
0.5m(u2) = -GMm(0 - 1/r1)
0.5mu2 = GMm/r1
We can cancel m:
0.5u2 = GM/r1
And rearrange for u:
u = (2GM/R)1/2

TR
Answered by Thomas R. Physics tutor

2684 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A nucleus of the stable isotope Pb(208,82) has more neutrons than protons. Explain why there is this imbalance between proton and neutron numbers by referring to the forces that operate within the nucleus.


How is a piezoelectric crystal used to generate waves of ultrasound?


Define a "Vector Quantity" and list 2 examples.


A cart starts at rest and moves freely down a ramp without friction or air resistance and descends 8 meters vertically, what is its speed at the bottom?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning