What is the escape velocity of an object leaving a planet mass M, radius R?

As the object leaves the surface of the planet, it loses kinetic energy and gains gravitational potential energy. Through conservation of energy we know the loss of kinetic energy must be equal to the gain of gravitational potential energy. This gives us an equation with initial kinetic energy minus final kinetic energy (as it is the loss of kinetic energy) on one side, and final GPE minus initial GPE on the other side, taking care to remember GPE is negative.
0.5mu2 - 0.5mv2 = (-GMm/r2) - (-GMm/r1)
0.5m(u2 - v2) = -GMm(1/r2 - 1/r1)
In order to have just enough velocity to escape, the velocity must be 0 at ininity. If it was any less it would just slowly fall back to the planet. So if we make r2 infinitely large, and v = 0, we get the following:
0.5m(u2) = -GMm(0 - 1/r1)
0.5mu2 = GMm/r1
We can cancel m:
0.5u2 = GM/r1
And rearrange for u:
u = (2GM/R)1/2

TR
Answered by Thomas R. Physics tutor

2449 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A Uranium-(238,92) nucleus decays into a Thorium-234 nucleus by the emission of an alpha-particle. Given Thorium has a chemical symbol Th build a nuclear equation.


Define the term "Gravitational Potential" and write down a formula which defines it.


State assumptions made about the motion of the molecules in a gas in the derivation of the kinetic theory of gases equation.


What do you understand by simple harmonic motion?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning