What is the escape velocity of an object leaving a planet mass M, radius R?

As the object leaves the surface of the planet, it loses kinetic energy and gains gravitational potential energy. Through conservation of energy we know the loss of kinetic energy must be equal to the gain of gravitational potential energy. This gives us an equation with initial kinetic energy minus final kinetic energy (as it is the loss of kinetic energy) on one side, and final GPE minus initial GPE on the other side, taking care to remember GPE is negative.
0.5mu2 - 0.5mv2 = (-GMm/r2) - (-GMm/r1)
0.5m(u2 - v2) = -GMm(1/r2 - 1/r1)
In order to have just enough velocity to escape, the velocity must be 0 at ininity. If it was any less it would just slowly fall back to the planet. So if we make r2 infinitely large, and v = 0, we get the following:
0.5m(u2) = -GMm(0 - 1/r1)
0.5mu2 = GMm/r1
We can cancel m:
0.5u2 = GM/r1
And rearrange for u:
u = (2GM/R)1/2

TR
Answered by Thomas R. Physics tutor

2555 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

How would you explain general relativity?


What is the difference between distance and displacement?


Describe the workings behind the Photoelectric effect


How many fission event occur per second if a Uranium 235 Nuclear Reactor outputs 210MW of energy? Average Binding Energy per Nucleon of Uranium 235- 7.6 MeV Average Binding Energy per Nucleon of Products-8.5 MeV


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning