Use de Moivre’s theorem to show that, (sin(x))^5 = A sin(5x) + Bsin(3x) + Csin(x), where A , B and C are constants to be found.

State de Moivre's theorem. Use n =5 and solve. I'll show this on the whiteboard.

RM
Answered by Robbie M. Further Mathematics tutor

5617 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Split x^4/[(x^2+4)*(x-2)^2] into partial fractions and hence differentiate it


The complex number -2sqrt(2) + 2sqrt(6)I can be expressed in the form r*exp(iTheta), where r>0 and -pi < theta <= pi. By using the form r*exp(iTheta) solve the equation z^5 = -2sqrt(2) + 2sqrt(6)i.


Solve (z-i)+(z+i)+(z-1)+(z-1)


Prove by induction that the sum of the first n integers can be written as (1/2)(n)(n+1).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning