How to determine the modulus of a complex number?

All complex numbers are in the form a+bi where a is the real part of the complex number and b is the imaginary part. Therefore if we are plotting the complex number on argand diagram the value of a tells us where the real part lies (i.e the x value) and the value of b tells us where the imaginary part is (i.e the y value).

The modulus is the distance from the origin to this point, so can be found using pythagorus' theorem. Therefore if z is the modulus z^2=a^2+b^2. We can see this method will work wherever the point is on the argand diagram and so know that sqrt(a^2+b^2) will always give us the modulus of a complex number. 

 

LH
Answered by Luke H. Further Mathematics tutor

8827 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

solve 3sinh^2(2x) + 11sinh(2x) = 4 for x, giving your answer(s) in terms of the natural log.


Find the Taylor Series expansion of tan(x) about π/4 up to the term in terms of (x-π/4)^3.


Let A, B and C be nxn matrices such that A=BC-CB. Show that the trace of A (denoted Tr(A)) is 0, where the trace of an nxn matrix is defined as the sum of the entries along the leading diagonal.


What are imaginary numbers, and why do we bother thinking about them if they don't exist?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences