Find the stationary points of the function z = 3x(x+y)3 - x3 + 24x

z = 3x(x+y)3 - x3 + 24xDifferentiating partially with respect to x and with respect to y:∂z/∂x = 3(x+y)3 + 9x(x+y)2 - 3x2 + 24∂z/∂y = 9x(x+y)2At stationary points: ∂z/∂x = 0 and ∂z/∂y = 0.From ∂z/∂y = 0 we deduce: x = 0 or y = -x.We consider ∂z/∂x = 0 in each of these cases:For x = 0:3y3 + 24 = 0y = -2Hence a stationary point at (0, -2, 0)For y = -x:-3x2 + 24 = 0x = 2√2 and x = -2√2Hence stationary points at (2√2, -2√2, 32√2) and (-2√2, 2√2, -32√2)

HT
Answered by Harvey T. Further Mathematics tutor

2239 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Given that the equation x^2 - 2x + 2 = 0 has roots A and B, find the values A + B, and A * B.


Given that x = i is a solution of 2x^3 + 3x^2 = -2x + -3, find all the possible solutions


Find the area of the surface generated when the curve with equation y=cosh(x) is rotated through 2 pi radians about the x axis, with 2<=x<=6


Find the Taylor Series expansion of tan(x) about π/4 up to the term in terms of (x-π/4)^3.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning