Find the stationary points of the function z = 3x(x+y)3 - x3 + 24x

z = 3x(x+y)3 - x3 + 24xDifferentiating partially with respect to x and with respect to y:∂z/∂x = 3(x+y)3 + 9x(x+y)2 - 3x2 + 24∂z/∂y = 9x(x+y)2At stationary points: ∂z/∂x = 0 and ∂z/∂y = 0.From ∂z/∂y = 0 we deduce: x = 0 or y = -x.We consider ∂z/∂x = 0 in each of these cases:For x = 0:3y3 + 24 = 0y = -2Hence a stationary point at (0, -2, 0)For y = -x:-3x2 + 24 = 0x = 2√2 and x = -2√2Hence stationary points at (2√2, -2√2, 32√2) and (-2√2, 2√2, -32√2)

HT
Answered by Harvey T. Further Mathematics tutor

1830 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Given z=cosx+isinx, show cosx=1/2(z+1/z)


A curve has equation y=(2-x)(1+x)+3, A line passes through the point (2,3) and the curve at a point with x coordinate 2+h. Find the gradient of the line. Then use that answer to find the gradient of the curve at (2,3), stating the value of the gradient


Given that y = arcsinh(x), show that y=ln(x+ sqrt(x^2 + 1) )


Find the general solution of y'' - 3y' + 2y = 2e^x


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences