A car of mass M and a maximum power output of P is on an rough inclined plane Θ to the horizontal. What is the maximum velocity (v). Coefficient of friction=μ and air resistance=kv where k is constant

At the maximum velocity the driving force of the car is equal to the sum of the opposing forces: Fdriving=Ffriction+Fair+mgsinΘ Ffriction=mgμcosΘ Fair=kv p=[mgμcosΘ+ kv+mgsinΘ]v = [μcosΘ+sinΘ]mgv+kv2 kv2+[μcosΘ+sinΘ]mgv-p=0 solve using the quadratic equation: v= -[μcosΘ+sinΘ]mg ± [ ([μcosΘ+sinΘ]mg)2+4kp]1/2 . 2k We only want the positive root as, the direction of velocity is up the incline therefore: v= -[μcosΘ+sinΘ]mg + [ ([μcosΘ+sinΘ]mg)2+4kp]1/2 . 2k

JB
Answered by Joel B. Physics tutor

2008 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Why do capacitors dis/charge suddenly and then slow down?


How can the average speedx of a gas molecule be derived?


What happens to ice when energy is supplied at a constant rate in terms of the changes in energy of the molecules?


Ignoring air resistance, use an energy argument to find the speed of a ball when it hits the ground if it is dropped from 50m, where m is the mass of the ball.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning