A ball is released from height h w.r.t. the ground. Draw a qualitative height versus time diagram of the ball bouncing in a non-ideal case.

In a non-ideal case, there will be energy loss in heat when the ball touches the ground. In particular:Kn=aKn-1, where Kn-1 is the kinetic energy before the nth bounce, Kn is the kinetic energy after the bounce, and a is the fraction of kinetic energy that remains after the bounce. We can see that this produces a geometric series of the form: Kn=anK0, which gives the kinetic energy after n bounces. To transform this into height, we just need to remember that the maximum height after n bounces hn is reached when Kn is all converted into potential energy (mgh), where m is the mass of the ball. Substitute the formula of KE. Hence: hn=Kn/(mg)=anK0/(mg). Now, as K0 is proportional to the height to which the ball was originally released h0(again, for the conservation of energy), We get: hn \propto anh0. Hence the maximum height decrease exponentially (as a <1). The maximum vertices are also peaks of rotated parabolas, as the ball obeys the free-fall equation which says that h is proportional to t2. Draw this and you get the diagram requested.

EP
Answered by Emanuele P. Physics tutor

2078 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Water flows through an electric shower at a rate of 6kg per minute. Assuming no heat is transferred to the surroundings, what power is required to heat the water by 20K as it flow through the shower?


What is the difference between a vector and a scalar quantity?


What determines the frequency of oscillation of a (loaded) spring?


Explain why a transformer is used in electrical power lines.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences