A ball is released from height h w.r.t. the ground. Draw a qualitative height versus time diagram of the ball bouncing in a non-ideal case.

In a non-ideal case, there will be energy loss in heat when the ball touches the ground. In particular:Kn=aKn-1, where Kn-1 is the kinetic energy before the nth bounce, Kn is the kinetic energy after the bounce, and a is the fraction of kinetic energy that remains after the bounce. We can see that this produces a geometric series of the form: Kn=anK0, which gives the kinetic energy after n bounces. To transform this into height, we just need to remember that the maximum height after n bounces hn is reached when Kn is all converted into potential energy (mgh), where m is the mass of the ball. Substitute the formula of KE. Hence: hn=Kn/(mg)=anK0/(mg). Now, as K0 is proportional to the height to which the ball was originally released h0(again, for the conservation of energy), We get: hn \propto anh0. Hence the maximum height decrease exponentially (as a <1). The maximum vertices are also peaks of rotated parabolas, as the ball obeys the free-fall equation which says that h is proportional to t2. Draw this and you get the diagram requested.

EP
Answered by Emanuele P. Physics tutor

2139 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

I have trouble visualizing simple harmonic motion, and remembering all the related equations. How should I think about it?


Find, using integration, the work done in compressing a spring by a distance x.


Uranium -238 has a half life of 4.5 billion years. How long will it take a 2g sample of U-238 to contain just 0.4g of U-238?


Derive an expression to show that for satellites in a circular orbit T^2 ∝ r^3 where T is the period of orbit and r is the radius of the orbit.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences