A ball is released from height h w.r.t. the ground. Draw a qualitative height versus time diagram of the ball bouncing in a non-ideal case.

In a non-ideal case, there will be energy loss in heat when the ball touches the ground. In particular:Kn=aKn-1, where Kn-1 is the kinetic energy before the nth bounce, Kn is the kinetic energy after the bounce, and a is the fraction of kinetic energy that remains after the bounce. We can see that this produces a geometric series of the form: Kn=anK0, which gives the kinetic energy after n bounces. To transform this into height, we just need to remember that the maximum height after n bounces hn is reached when Kn is all converted into potential energy (mgh), where m is the mass of the ball. Substitute the formula of KE. Hence: hn=Kn/(mg)=anK0/(mg). Now, as K0 is proportional to the height to which the ball was originally released h0(again, for the conservation of energy), We get: hn \propto anh0. Hence the maximum height decrease exponentially (as a <1). The maximum vertices are also peaks of rotated parabolas, as the ball obeys the free-fall equation which says that h is proportional to t2. Draw this and you get the diagram requested.

EP
Answered by Emanuele P. Physics tutor

2689 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

An aeroplane lands on the runway with a velocity of 50 m/s and decelerates at 10 m/s^2 to a velocity of 20 m/s. Calculate the distance travelled on the runway.


A ball is initially at rest and is dropped from a height of 10m. Calculate the velocity of the ball when it reaches the ground


There is a train A. On the roof of A is another frictionless train B of mass Mb. A mass Mc hangs off the front of A and is attached to the front of B by rope and frictionless pulley. How fast should A accelerate so that B wont fall off the roof of A.


(ii) Describe and explain how the horizontal component of the water jet varies from point X to point Y. (2 marks)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning