A ball is released from height h w.r.t. the ground. Draw a qualitative height versus time diagram of the ball bouncing in a non-ideal case.

In a non-ideal case, there will be energy loss in heat when the ball touches the ground. In particular:Kn=aKn-1, where Kn-1 is the kinetic energy before the nth bounce, Kn is the kinetic energy after the bounce, and a is the fraction of kinetic energy that remains after the bounce. We can see that this produces a geometric series of the form: Kn=anK0, which gives the kinetic energy after n bounces. To transform this into height, we just need to remember that the maximum height after n bounces hn is reached when Kn is all converted into potential energy (mgh), where m is the mass of the ball. Substitute the formula of KE. Hence: hn=Kn/(mg)=anK0/(mg). Now, as K0 is proportional to the height to which the ball was originally released h0(again, for the conservation of energy), We get: hn \propto anh0. Hence the maximum height decrease exponentially (as a <1). The maximum vertices are also peaks of rotated parabolas, as the ball obeys the free-fall equation which says that h is proportional to t2. Draw this and you get the diagram requested.

EP
Answered by Emanuele P. Physics tutor

2686 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A cart starts at rest and moves freely down a ramp without friction or air resistance and descends 8 meters vertically, what is its speed at the bottom?


A crane is attached to one end of a steel girder, and lifts that end into the air. When the cable attached to the end of the girder is at 20 degrees to the vertical, the tension is 6.5kN. Calculate the horizontal and vertical components of this force.


What path would a charge moving in the x-y plane track, in the presence of a uniform magnetic field out of the page?


A railway car of mass m1 travelling at a velocity of v1 collides with a second car of mass m2 travelling at v2 and the two join together. What is their final velocity?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning