Express sin(5theta) in terms of sin(theta) and powers of sin(theta) only.

Consider the expression (cos(theta) + i*sin(theta))5 . (Where theta a real parameter).By De Moirve's theorem, we know this expression is equivalent to cos(5theta) + i sin(5theta).We can also apply the binomial expansion to this expression and sort into real and imaginary components.We can then equate these two expressions we have found and compare imaginary components to obtain the required solution.This is best written out by hand.

PF
Answered by Peter F. Further Mathematics tutor

4963 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

What's the best way to solve projectile problems in Mechanics?


Find the general solution to the differential equation y'' + 4y' + 3y = 6e^(2x) [where y' is dy/dx and y'' is d^2 y/ dx^2]


Use induction to prove that for all positive integers n, f(n)=2^(3n+1)+3x5^(2n+1) is divisible by 17.


Find the general solution of the differential equation d^2y/dx^2 - 5*dy/dx + 4y = 2x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning