Express sin(5theta) in terms of sin(theta) and powers of sin(theta) only.

Consider the expression (cos(theta) + i*sin(theta))5 . (Where theta a real parameter).By De Moirve's theorem, we know this expression is equivalent to cos(5theta) + i sin(5theta).We can also apply the binomial expansion to this expression and sort into real and imaginary components.We can then equate these two expressions we have found and compare imaginary components to obtain the required solution.This is best written out by hand.

PF
Answered by Peter F. Further Mathematics tutor

5198 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Use De Moivre's Theorem to show that if z = cos(q)+isin(q), then (z^n)+(z^-n) = 2cos(nq) and (z^n)-(z^-n)=2isin(nq).


What is the general solution to the equation d2y/dx2 + dy/dx - 2y = -3sinx + cosx (d2y/dx2 signals a second order derivative)


Determine if these two vectors are perpendicular. a=[1,4,8], b=[0,6,-3]


Using the definitions of hyperbolic functions in terms of exponentials show that sech^2(x) = 1-tanh^2(x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning