What is the polar form of the equation: x^2+y^2 =xy+1

Using Pythagoras, x2 + y2 = r2.Using basic trigonometry, x = rsinθ and y = rcosθ.
xy + 1 = r2sinθcosθ + 1 = (1/2)r2sin2θ + 1
Subbing in both halves and doubling gives:2r2 = r2sin2θ + 2
-> r2(2 - sin2θ)r2 = 2
-> r2 = 2/(2-sin2θ)

HW
Answered by Hansen W. Further Mathematics tutor

4380 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

It is given that f(x) = 2sinhx+3coshx. Show that the curve y = f(x) has a stationary point at x =-½ ln(5) and find the value of y at this point. Solve the equation f(x) = 5, giving your answers exactly


A particle is moving in a straight line with simple harmonic motion. The period of the motion is (3pi/5)seconds and the amplitude is 0.4metres. Calculate the maximum speed of the particle.


Find the modulus-argument form of the complex number z=(5√ 3 - 5i)


Write down the equations of the three asymptotes and the coordinates of the points where the curve y = (3x+2)(x-3)/(x-2)(x+1) crosses the axes.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences