What is the polar form of the equation: x^2+y^2 =xy+1

Using Pythagoras, x2 + y2 = r2.Using basic trigonometry, x = rsinθ and y = rcosθ.
xy + 1 = r2sinθcosθ + 1 = (1/2)r2sin2θ + 1
Subbing in both halves and doubling gives:2r2 = r2sin2θ + 2
-> r2(2 - sin2θ)r2 = 2
-> r2 = 2/(2-sin2θ)

HW
Answered by Hansen W. Further Mathematics tutor

4440 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Find the volume of revolution formed by rotating the curve y = sinx 2pie around the x- axis


Use de Moivre’s theorem to show that, (sin(x))^5 = A sin(5x) + Bsin(3x) + Csin(x), where A , B and C are constants to be found.


The curve C has polar equation 'r = 3a(1 + cos(x)). The tangent to C at point A is parallel to the initial line. Find the co-ordinates of A. 0<x<pi


Differentiate arctan(x) with respect to x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences