Solve the following inequality: 2x^2 < x+3

2x2 < x+3, 2x2- x - 3 < 0, (2x - 3) (x + 1) < 0, Positive quadratic. Roots: x = -1 and x = 3/2, Therefore, x takes values greater than -1 and less than 3/2.

OM
Answered by Olia M. Further Mathematics tutor

2913 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

(FP1) Given k = q + 3i and z = w^2 - 8w* - 18q^2 i, and if w is purely imaginary, show that there is only one possible non-zero value of z


Find the general solution for the determinant of a 3x3 martix. When does the inverse of this matrix not exist?


prove by induction that, f(n) = 2^(3n+1) + 3(5^(2n+1)) is divisible by 17 for all n>0.


What are polar coordinates?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning