Solve the following inequality: 2x^2 < x+3

2x2 < x+3, 2x2- x - 3 < 0, (2x - 3) (x + 1) < 0, Positive quadratic. Roots: x = -1 and x = 3/2, Therefore, x takes values greater than -1 and less than 3/2.

OM
Answered by Olia M. Further Mathematics tutor

2983 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Find y in terms of x for the equation 2x(dy/dx) + 4y = 8x^2


Differentiate arctan of x with respect to x.


Find the GS to the following 2nd ODE: d^2y/dx^2 + 3(dy/dx) + 2 = 0


Why is the integral of 1/sqrt(1-x^2)dx = sin^{-1}(x)?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning