Solve the following inequality: 2x^2 < x+3

2x2 < x+3, 2x2- x - 3 < 0, (2x - 3) (x + 1) < 0, Positive quadratic. Roots: x = -1 and x = 3/2, Therefore, x takes values greater than -1 and less than 3/2.

OM
Answered by Olia M. Further Mathematics tutor

2634 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Solve for z in the equation sin(z) = 2


A curve C has equation y = x^2 − 2x − 24 x^(1/2), x > 0. Find dy/dx and d^2y/dx^2. Verify that C has a stationary point when x = 4


Find the general solution of the differential equation d^2y/dx^2 - 5*dy/dx + 4y = 2x


Find roots 'a' and 'b' of the quadratic equation 2(x^2) + 6x + 7 = 0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences