Solve the following inequality: 2x^2 < x+3

2x2 < x+3, 2x2- x - 3 < 0, (2x - 3) (x + 1) < 0, Positive quadratic. Roots: x = -1 and x = 3/2, Therefore, x takes values greater than -1 and less than 3/2.

OM
Answered by Olia M. Further Mathematics tutor

2955 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

A rectangular hyperbola has parametric equations x = 4t, y = 4/t , (z non 0). Points P and Q on this hyperbola have parameters t = 1/4 and t = 2. Find the equation of the line l which passes through the origin and is perpendicular to the line PQ.


Integrate (4x+3)^1/2 with respect to x.


Using your knowledge of complex numbers, such as De Moivre's and Euler's formulae, verify the trigonometric identities for the double angle.


How do I determine whether a system of 3 linear equations is consistent or not?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning