2 identical trolleys of mass M(one is loaded with 2 blocks of mass m) are on a ramp inclined at 35° and are connected by a wire that passes around a pulley at the top of the ramp. They are released and accelerate accordingly. Show that a=(mgsin35°)/(M+m).

Construction of Free Body Diagrams of the Trolleys and resolving the forces (Weight and Tension) components acting parallel to the ramp (assuming friction and air resistance are negligible) show that for Trolley A: F=ma--> (M+2m)a=(M+2m)gsin35-T and for Trolley B: F=ma-->Ma=T-Mg. Note that the magnitude of acceleration a is identical for both trolleys but acceleration acts in opposite directions (assuming pulley is massless and frictionless) Rearranging the equations in terms of T gives T(Trolley A)=(M+2m)gsin35-(M+2m)a and T(Trolley B)=Ma+Mgsin35. Tension is the same throughout the whole wire (assuming light inextinsible wire) so combining the T equations gives (M+2m)gsin35-Mgsin35=Ma+(M+2m)a. Factorising both sides with (gsin35) and (a) accordingly and simplifying results in gsin35(M+2m-M)=a(M+M+2m) --> 2mgsin35=2a(M+m). Finally rearranging for a gives the solution which is a=(mgsin35)/(M+m)

NV
Answered by Neophytos V. Physics tutor

3257 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Define Simple Harmonic Motion


A ball is fired at an angle of 50 degrees with a velocity of 10 ms^-1, at what time does it first hit the floor?


Explain the change of quark character associated with the beta-plus decay and deduce the equation.


What is an electron volt?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences