2 identical trolleys of mass M(one is loaded with 2 blocks of mass m) are on a ramp inclined at 35° and are connected by a wire that passes around a pulley at the top of the ramp. They are released and accelerate accordingly. Show that a=(mgsin35°)/(M+m).

Construction of Free Body Diagrams of the Trolleys and resolving the forces (Weight and Tension) components acting parallel to the ramp (assuming friction and air resistance are negligible) show that for Trolley A: F=ma--> (M+2m)a=(M+2m)gsin35-T and for Trolley B: F=ma-->Ma=T-Mg. Note that the magnitude of acceleration a is identical for both trolleys but acceleration acts in opposite directions (assuming pulley is massless and frictionless) Rearranging the equations in terms of T gives T(Trolley A)=(M+2m)gsin35-(M+2m)a and T(Trolley B)=Ma+Mgsin35. Tension is the same throughout the whole wire (assuming light inextinsible wire) so combining the T equations gives (M+2m)gsin35-Mgsin35=Ma+(M+2m)a. Factorising both sides with (gsin35) and (a) accordingly and simplifying results in gsin35(M+2m-M)=a(M+M+2m) --> 2mgsin35=2a(M+m). Finally rearranging for a gives the solution which is a=(mgsin35)/(M+m)

NV
Answered by Neophytos V. Physics tutor

3489 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A stationary particle explodes into 3: A (to the left), B and C (both to the right). B has mass m and speed 3v. C has mass 2m and speed v. A has speed 2v. What is the mass of A in terms of m?


An electron is accelerated through a uniform electric field of strength, E= 20 [N/C]. Determine the speed after the the electron travels 0.5 m from rest.


A nail of mass 7.0g is held horizontally and is hit by a hammer of mass 0.25kg moving at 10ms^-1. The hammer remains in contact with the nail during and after the blow. (a) What is the velocity of the hammer and nail after contact?


A wire has length l, cross-sectional area a, resistivity p and resistance R. It is compressed to a third of its original length but its volume and resistivity are constant. Show its new resistance is R/9.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning