A car of mass m travelling with a velocity v comes to rest over a distance d in time t. The constant frictional force acting on the car while it is braking is found using:

Newton's Second Law: F=maa=v-u/tUsing SUVAT equations: v2= u2+2asv (final velocity)=0 u(inital velocity)= v s=d Rearranging gives: -v2=2ad a=-v2/2d Therefore F= -mv2/2dNegative sign suggests the car is slowing down (negative acceleration)



GH
Answered by Ghafoor H. Physics tutor

8076 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A gun of mass 10kg fires a bullet of mass 240g at a speed of 300ms-1. What is the speed of the gun's recoil?


A particle of mass 5kg is moving in circular motion with a time period of 2 seconds. The radius of the circle is 10m. What is the centripetal force on the particle


A mass, m, is resting on a slope being slowly tilted upwards from horizontal. The static friction co-efficient is 0.3 and the dynamic friction co-efficient is 0.2: at what angle will the mass begin to slip?


Two balls with the same kinetic energy have mass of ball a = m and ball b = 2m. What is the ratio of their momentums: a/b?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning