A car of mass m travelling with a velocity v comes to rest over a distance d in time t. The constant frictional force acting on the car while it is braking is found using:

Newton's Second Law: F=maa=v-u/tUsing SUVAT equations: v2= u2+2asv (final velocity)=0 u(inital velocity)= v s=d Rearranging gives: -v2=2ad a=-v2/2d Therefore F= -mv2/2dNegative sign suggests the car is slowing down (negative acceleration)



GH
Answered by Ghafoor H. Physics tutor

7442 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Explain in terms of the motion of the molecules of the gas why the volume of gas must increase if the pressure is to remain constant as the gas is heated.


Explain why a transformer only works with an alternating current and doesn't with a direct current.


Define a "Vector Quantity" and list 2 examples.


a solar cell of area 2m^2 has maximum a power output per unit area of 20W/m^2 . if four solar cells are used together at once, how much energy is release in 2 mins at max power output?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences