f(x)=ln(x). Find the area underneath the curve f(x) between 1 and 2.

We cannot dirrectly intergrate ln(x), so instead we intergrate 1ln(x) using intergration by parts.
The formula for intergration by parts is: ∫ (u
dv/dx) dx = uv − ∫ vdu/dx dx .
We let u=ln(x) so that du/dx=1/xWe let dv/dx=1 so that v=x
We put those values into the formula and we get ∫ ln(x) dx = x
ln(x) - ∫ (x1/x )dx∫ ln(x) dx = xln(x) - ∫1 dx∫ ln(x) dx = xln(x)-x + c
Finding the area under the curve between 1 and 2. ∫21 ln(x) dx = [x
ln(x)-x]2121 ln(x) dx = 2ln(2)-2-(1ln(1)-1) ∫21 ln(x) dx = 2*ln(2)-1

AT
Answered by Angus T. Further Mathematics tutor

2973 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Prove by induction that for all positive integers n , f(n) = 2^(3n+1) + 3*5^(2n+1) , is divisible by 17.


Given sinhx = 0.5(e^x - e^-x), express its inverse, arcsinhx in terms of x.


Particles P and Q move in a plane with constant velocities. At time t = 0 the position vectors of P and Q, relative to a fixed point O in the plane, are (16i - 12j) m and -5i + 4j) m respectively. The velocity of P is (i + 2j) m/s and the velocity of Q


Prove, by induction, that 4^(n+1) + 5^(2n-1) is always divisible by 21


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning