Differentiate arcsin(2x) using the fact that 2x=sin(y)

Differentiate implicitly on both sides with respect to x to get: 2=cos(y) • (dy/dx). Divide by cos(y) on both sides to get: dy/dx=2/cos(y). Use the trigonometric identity cos^2(y)+sin^2(y)=1 rearranged to cos(y) = [1-sin^2(y)]^1/2 and substitute this into dy/dx= 2/cos(y) to get dy/dx=2/[1-sin^2(y)]^1/2. Notice that 2x=sin(y) as given initially and substitute to get dy/dx=2/[1-(2x)^2]^1/2. Final answer is d/dx (arcsin(2x)) = 2/(1-4x^2)^1/2

LO
Answered by Louise O. Further Mathematics tutor

2514 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

a) Show that d/dx(arcsin x) = 1/(√ (1-x²)). b) Hence, use a suitable trigonometric substitution to find ∫ (1/(√ (4-2x-x²))) dx.


Find the general solution to f''(x)+ 3f'(x)+ 2f(x)=0


Find the volume of revolution formed by rotating the curve y = sinx 2pie around the x- axis


Find the area of the surface generated when the curve with equation y=cosh(x) is rotated through 2 pi radians about the x axis, with 2<=x<=6


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences